Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 158293 by mnjuly1970 last updated on 02/Nov/21

       question#  If ,  Ω =∫_0 ^( 1) ((ln^( 2) (1−x^( 4) ))/x) dx= a ζ b)        find the value of ,     a  , b  .

$$ \\ $$$$\:\:\:\:\:{question}# \\ $$$$\left.\mathrm{If}\:,\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{4}} \right)}{{x}}\:{dx}=\:{a}\:\zeta\:{b}\right) \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:,\:\:\:\:\:{a}\:\:,\:{b}\:\:. \\ $$$$ \\ $$$$ \\ $$

Answered by qaz last updated on 02/Nov/21

∫_0 ^1 ((ln^2 (1−x^4 ))/x)dx  =(1/4)∫_0 ^1 ((ln^2 (1−x))/x)dx  =(1/4)Σ_(n=0) ^∞ ∫_0 ^1 x^n ln^2 xdx  =(1/4)Σ_(n=0) ^∞ ((2!)/((n+1)^3 ))  =(1/2)ζ(3)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \mathrm{ln}^{\mathrm{2}} \mathrm{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}!}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{3}\right) \\ $$

Commented by mnjuly1970 last updated on 02/Nov/21

grateful sir qaz  excellent as always

$${grateful}\:{sir}\:{qaz} \\ $$$${excellent}\:{as}\:{always} \\ $$

Answered by mindispower last updated on 02/Nov/21

=∫_0 ^1 ((ln^2 (1−x^4 )x^3 )/x^4 )dx  =∫_0 ^1 ((ln^2 (1−t))/t)(dt/3)  ln(1−t)=−u⇒dt=e^(−u) du  =(1/3)∫_0 ^∞ ((u^2 e^(−u) )/(1−e^(−u) ))du=(1/3)Γ(3)ζ(3)=(2/3)ζ(3)

$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right){x}^{\mathrm{3}} }{{x}^{\mathrm{4}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)}{{t}}\frac{{dt}}{\mathrm{3}} \\ $$$${ln}\left(\mathrm{1}−{t}\right)=−{u}\Rightarrow{dt}={e}^{−{u}} {du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\mathrm{2}} {e}^{−{u}} }{\mathrm{1}−{e}^{−{u}} }{du}=\frac{\mathrm{1}}{\mathrm{3}}\Gamma\left(\mathrm{3}\right)\zeta\left(\mathrm{3}\right)=\frac{\mathrm{2}}{\mathrm{3}}\zeta\left(\mathrm{3}\right) \\ $$

Commented by mnjuly1970 last updated on 03/Nov/21

thx sir power

$${thx}\:{sir}\:{power} \\ $$

Answered by Ar Brandon last updated on 02/Nov/21

Ω=∫_0 ^1 ((ln^2 (1−x^4 ))/x)dx, x=u^(1/4) ⇒dx=(1/4)u^(−(3/4)) du      =(1/4)∫_0 ^1 ((ln^2 (1−u))/u)du=(1/4)∫_0 ^1 ((ln^2 u)/(1−u))du      =−(1/4)ψ^((2)) (1)=(2/4)ζ(3)=(1/2)ζ(3)

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)}{{x}}{dx},\:{x}={u}^{\frac{\mathrm{1}}{\mathrm{4}}} \Rightarrow{dx}=\frac{\mathrm{1}}{\mathrm{4}}{u}^{−\frac{\mathrm{3}}{\mathrm{4}}} {du} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{u}\right)}{{u}}{du}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {u}}{\mathrm{1}−{u}}{du} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{4}}\psi^{\left(\mathrm{2}\right)} \left(\mathrm{1}\right)=\frac{\mathrm{2}}{\mathrm{4}}\zeta\left(\mathrm{3}\right)=\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{3}\right) \\ $$

Commented by mnjuly1970 last updated on 03/Nov/21

mercey mr brandon

$${mercey}\:{mr}\:{brandon} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com