Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 158334 by alcohol last updated on 02/Nov/21

lim_(x→∞) (1/x)Σ_(r=1) ^x cos(((rπ)/(2x)))  x∈N

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right) \\ $$$${x}\in\mathbb{N} \\ $$

Commented by aleks041103 last updated on 02/Nov/21

The upper bound of the summation  can only be a natural number, while  x is not...Probably there is a mistake!

$${The}\:{upper}\:{bound}\:{of}\:{the}\:{summation} \\ $$$${can}\:{only}\:{be}\:{a}\:{natural}\:{number},\:{while} \\ $$$${x}\:{is}\:{not}...{Probably}\:{there}\:{is}\:{a}\:{mistake}! \\ $$

Commented by alcohol last updated on 02/Nov/21

x∈N

$${x}\in\mathbb{N} \\ $$

Commented by puissant last updated on 03/Nov/21

lim_(x→∞) (1/x)Σ_(r=1) ^x cos(((rπ)/(2x))) = ∫_0 ^1 cos(((πa)/2))da  = (2/π){sin(((πa)/2))}_0 ^1  = (2/π)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left(\frac{\pi{a}}{\mathrm{2}}\right){da} \\ $$$$=\:\frac{\mathrm{2}}{\pi}\left\{{sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)\right\}_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{2}}{\pi} \\ $$

Answered by aleks041103 last updated on 02/Nov/21

Σ_(r=1) ^x cos(((rπ)/(2x)))=Re(Σ_(r=1) ^x e^((irπ)/(2x)) )=Re(Σ_(r=1) ^x (e^((iπ)/(2x)) )^r )=  =Re(e^((iπ)/(2x)) (((e^((iπ)/(2x)) )^x −1)/(e^((iπ)/(2x)) −1)))=  =Re((e^((iπ)/(2x)) /(e^((iπ)/(2x)) −1)))Re((e^((iπ)/(2x)) )^x −1)−Im((e^((iπ)/(2x)) /(e^((iπ)/(2x)) −1)))Im((e^((iπ)/(2x)) )^x −1)  (e^((iπ)/(2x)) /(e^((iπ)/(2x)) −1)) =1+(1/(e^((iπ)/(2x)) −1))=1+((e^(−((iπ)/(2x))) −1)/((e^((iπ)/(2x)) −1)(e^(−((iπ)/(2x))) −1)))=  =1+((e^(−((iπ)/(2x))) −1)/(1+1−(e^((iπ)/(2x)) +e^(−((iπ)/(2x))) )))=1+((e^(−((iπ)/(2x))) −1)/(2(1−cos((π/(2x))))))=(1/2)(1−ictg((π/(4x))))  ⇒Re(e^((iπ)/(2x)) (((e^((iπ)/(2x)) )^x −1)/(e^((iπ)/(2x)) −1)))=Re((e^((iπ)/(2x)) /(e^((iπ)/(2x)) −1))(i−1))  =(1/2)(−1)−(1/2)ctg((π/(4x)))=−(1/2)(1+ctg((π/(4x))))...

$$\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right)={Re}\left(\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{e}^{\frac{{ir}\pi}{\mathrm{2}{x}}} \right)={Re}\left(\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{r}} \right)= \\ $$$$={Re}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \frac{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right)= \\ $$$$={Re}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right){Re}\left(\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}\right)−{Im}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right){Im}\left(\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}\right) \\ $$$$\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}\right)\left({e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}\right)}= \\ $$$$=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\mathrm{1}+\mathrm{1}−\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} +{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} \right)}=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{2}{x}}\right)\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{ictg}\left(\frac{\pi}{\mathrm{4}{x}}\right)\right) \\ $$$$\Rightarrow{Re}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \frac{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right)={Re}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\left({i}−\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ctg}\left(\frac{\pi}{\mathrm{4}{x}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{ctg}\left(\frac{\pi}{\mathrm{4}{x}}\right)\right)... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com