All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 158340 by LEKOUMA last updated on 02/Nov/21
1)Proventhatbyalln∈N∗2!4!..(2n)!⩾((n+1)!)n2)Provenbyrecurringthat∑p=1npp!=(n+1)!−1
Answered by puissant last updated on 03/Nov/21
2)∑np=1pp!=∑np=1{(p+1)−1}p!=(p+1)!−p!=2!−1!+3!−2!+.....+n!−(n−1)!+(n+1)!−n!=(n+1)!−1..
1)★2!⩾((1+1)!)1→2!⩾2!✓★2!4!⩾((2+1)!)2→48⩾36✓∏nk=1(2k)!⩾((n+1)!)n⇒∏nk=1(2k)!(2n+2)!⩾((n+1)!)n(2n+2)!⇒∏n+1k=1(2k)!⩾((n+1)!)n+1∏2nk=n(k+2)⩾((n+1)!)n+1⇒∏n+1k=1(2k)!⩾((n+1)!)n+1✓.........Lepuissant............
Terms of Service
Privacy Policy
Contact: info@tinkutara.com