All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 158477 by LEKOUMA last updated on 04/Nov/21
In=∫01x2n+11+x2dx,n⩾0provethat∀n⩾0(2n+1)In=2−2nIn−1
Answered by Ar Brandon last updated on 04/Nov/21
In=∫01x2n+11+x2dx,x=tanϑ⇒dx=sec2ϑdϑ=∫0π4tan2n+1ϑsecϑ⋅sec2ϑdϑ=∫0π4tan2n+1ϑsecϑdϑ=∫0π4tan2nϑ⋅secϑtanϑdϑ,{u(ϑ)=tan2nϑv′(ϑ)=secϑtanϑ⇒{u′(ϑ)=2ntan2n−1ϑsec2ϑv(ϑ)=secϑ=[tan2nϑsecϑ]0π4−2n∫0π4tan2n−1sec3ϑdϑ=2−2n∫0π4tan2n−1secϑdϑ−2n∫0π4tan2n+1ϑsecϑdϑ=2−2nIn−1−2nIn⇒(2n+1)In=2−2nIn−1
In=∫01x2n+11+x2dx=12∫01x2n⋅2x1+x2dx{u(x)=x2nv′(x)=2x1+x2⇒{u′(x)=2nx2n−1v(x)=21+x2In=[x2n1+x2]01−2n∫01x2n−11+x2dx=2−2n∫01x2n−1(1+x2)1+x2dx=2−2n∫01x2n−11+x2dx−2n∫01x2n+11+x2dx=2−2nIn−1−2nIn⇒(2n+1)In=2−2nIn−1
Commented by mnjuly1970 last updated on 05/Nov/21
thanksalotyakhchider...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com