Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 158477 by LEKOUMA last updated on 04/Nov/21

I_(n ) =∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx , n≥0   prove that ∀ n≥0   (2n+1)I_n =(√2)−2nI_(n−1)

In=01x2n+11+x2dx,n0provethatn0(2n+1)In=22nIn1

Answered by Ar Brandon last updated on 04/Nov/21

I_n =∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx, x=tanϑ⇒dx=sec^2 ϑdϑ       =∫_0 ^(π/4) ((tan^(2n+1) ϑ)/(secϑ))∙sec^2 ϑdϑ=∫_0 ^(π/4) tan^(2n+1) ϑsecϑdϑ       =∫_0 ^(π/4) tan^(2n) ϑ∙secϑtanϑdϑ,  { ((u(ϑ)=tan^(2n) ϑ)),((v′(ϑ)=secϑtanϑ)) :}                                                        ⇒ { ((u′(ϑ)=2ntan^(2n−1) ϑsec^2 ϑ)),((v(ϑ)=secϑ)) :}       =[tan^(2n) ϑsecϑ]_0 ^(π/4) −2n∫_0 ^(π/4) tan^(2n−1) sec^3 ϑdϑ       =(√2)−2n∫_0 ^(π/4) tan^(2n−1) secϑdϑ−2n∫_0 ^(π/4) tan^(2n+1) ϑsecϑdϑ       =(√2)−2nI_(n−1) −2nI_n ⇒ determinant ((((2n+1)I_n =(√2)−2nI_(n−1) )))

In=01x2n+11+x2dx,x=tanϑdx=sec2ϑdϑ=0π4tan2n+1ϑsecϑsec2ϑdϑ=0π4tan2n+1ϑsecϑdϑ=0π4tan2nϑsecϑtanϑdϑ,{u(ϑ)=tan2nϑv(ϑ)=secϑtanϑ{u(ϑ)=2ntan2n1ϑsec2ϑv(ϑ)=secϑ=[tan2nϑsecϑ]0π42n0π4tan2n1sec3ϑdϑ=22n0π4tan2n1secϑdϑ2n0π4tan2n+1ϑsecϑdϑ=22nIn12nIn(2n+1)In=22nIn1

Answered by Ar Brandon last updated on 04/Nov/21

I_n =∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx=(1/2)∫_0 ^1 x^(2n) ∙((2x)/( (√(1+x^2 ))))dx   { ((u(x)=x^(2n) )),((v′(x)=((2x)/( (√(1+x^2 )))))) :}⇒ { ((u′(x)=2nx^(2n−1) )),((v(x)=2(√(1+x^2 )))) :}  I_n =[x^(2n) (√(1+x^2 ))]_0 ^1 −2n∫_0 ^1 x^(2n−1) (√(1+x^2 ))dx       =(√2)−2n∫_0 ^1 ((x^(2n−1) (1+x^2 ))/( (√(1+x^2 ))))dx       =(√2)−2n∫_0 ^1 (x^(2n−1) /( (√(1+x^2 ))))dx−2n∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx       =(√2)−2nI_(n−1) −2nI_n ⇒ determinant ((((2n+1)I_n =(√2)−2nI_(n−1) )))

In=01x2n+11+x2dx=1201x2n2x1+x2dx{u(x)=x2nv(x)=2x1+x2{u(x)=2nx2n1v(x)=21+x2In=[x2n1+x2]012n01x2n11+x2dx=22n01x2n1(1+x2)1+x2dx=22n01x2n11+x2dx2n01x2n+11+x2dx=22nIn12nIn(2n+1)In=22nIn1

Commented by mnjuly1970 last updated on 05/Nov/21

 thanks alot yakhchider...

thanksalotyakhchider...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com