Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1585 by Rasheed Soomro last updated on 22/Aug/15

Let ω is cube root of unity and x,y,z ∈ Z  If ω^x +ω^y +ω^z =0 prove that 3 ∣ (x+y+z)  Show by an example that the converse is not  true.

$$\mathrm{Let}\:\omega\:\mathrm{is}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{and}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{Z} \\ $$$$\mathrm{If}\:\omega^{\mathrm{x}} +\omega^{\mathrm{y}} +\omega^{\mathrm{z}} =\mathrm{0}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{3}\:\mid\:\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right) \\ $$$$\mathrm{Show}\:{by}\:{an}\:{example}\:\mathrm{that}\:\mathrm{the}\:\mathrm{converse}\:\mathrm{is}\:{not}\:\:\mathrm{true}. \\ $$

Commented by 112358 last updated on 22/Aug/15

ω^3 −1=0  Cube root of unity⇒ω=e^((2kπi)/3)  ,k=−1,0,1  Let  ψ(x,y,z)=ω^x +ω^y +ω^z =e^((2xπik)/3) +e^((2kπiy)/3) +e^((2kπiz)/3)   ψ(x,y,z)=cos(((2πxk)/3))+cos(((2πyk)/3))+cos(((2πzk)/3))+i[sin(((2kxπ)/3))+sin(((2πyk)/3))+sin(((2πzk)/3))]  If ψ(x,y,z)=0⇒Re(ψ(x,y,z))=0 ,Im(ψ(x,y,z))=0  ∴cos(((2πxk)/3))+cos(((2πyk)/3))+cos(((2πzk)/3))=0  and   sin(((2πxk)/3))+sin(((2πyk)/3))+sin(((2πzk)/3))=0  for k=−1,0,1 and x,y,z∈Z

$$\omega^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$${Cube}\:{root}\:{of}\:{unity}\Rightarrow\omega={e}^{\frac{\mathrm{2}{k}\pi{i}}{\mathrm{3}}} \:,{k}=−\mathrm{1},\mathrm{0},\mathrm{1} \\ $$$${Let} \\ $$$$\psi\left({x},{y},{z}\right)=\omega^{{x}} +\omega^{{y}} +\omega^{{z}} ={e}^{\frac{\mathrm{2}{x}\pi{ik}}{\mathrm{3}}} +{e}^{\frac{\mathrm{2}{k}\pi{iy}}{\mathrm{3}}} +{e}^{\frac{\mathrm{2}{k}\pi{iz}}{\mathrm{3}}} \\ $$$$\psi\left({x},{y},{z}\right)={cos}\left(\frac{\mathrm{2}\pi{xk}}{\mathrm{3}}\right)+{cos}\left(\frac{\mathrm{2}\pi{yk}}{\mathrm{3}}\right)+{cos}\left(\frac{\mathrm{2}\pi{zk}}{\mathrm{3}}\right)+{i}\left[{sin}\left(\frac{\mathrm{2}{kx}\pi}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{2}\pi{yk}}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{2}\pi{zk}}{\mathrm{3}}\right)\right] \\ $$$${If}\:\psi\left({x},{y},{z}\right)=\mathrm{0}\Rightarrow{Re}\left(\psi\left({x},{y},{z}\right)\right)=\mathrm{0}\:,{Im}\left(\psi\left({x},{y},{z}\right)\right)=\mathrm{0} \\ $$$$\therefore{cos}\left(\frac{\mathrm{2}\pi{xk}}{\mathrm{3}}\right)+{cos}\left(\frac{\mathrm{2}\pi{yk}}{\mathrm{3}}\right)+{cos}\left(\frac{\mathrm{2}\pi{zk}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${and}\: \\ $$$${sin}\left(\frac{\mathrm{2}\pi{xk}}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{2}\pi{yk}}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{2}\pi{zk}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${for}\:{k}=−\mathrm{1},\mathrm{0},\mathrm{1}\:{and}\:{x},{y},{z}\in\mathbb{Z} \\ $$$$ \\ $$$$ \\ $$

Commented by 123456 last updated on 22/Aug/15

x=y=z=0⇒3∣(x+y+z)=0,ω^x +ω^y +ω^z =3≠0

$${x}={y}={z}=\mathrm{0}\Rightarrow\mathrm{3}\mid\left({x}+{y}+{z}\right)=\mathrm{0},\omega^{{x}} +\omega^{{y}} +\omega^{{z}} =\mathrm{3}\neq\mathrm{0} \\ $$

Answered by 123456 last updated on 23/Aug/15

ω=e^(((2π)/3)ι) =cos ((2π)/3)+ısin ((2π)/3)  some fact that help  theorem:  if z_1 ,z_2 ,z_3  are 3 unitary complex number  such that their sum is 0, then the angle  betwen them is 120°  proof:  since z_1 ,z_2 ,z_3  are unitary, we can write  ∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1  z_1 =e^(φı) =cos φ+ısin φ  z_2 =e^((φ+θ_1 )ı) =cos(φ+θ_1 )+ısin(φ+θ_1 )  z_3 =e^((φ+θ_2 )ı) =cos(φ+θ_2 )+ısin(φ+θ_2 )  z_1 +z_2 +z_3 =0  e^(φı) +e^((φ+θ_1 )ı) +e^((φ+θ_2 )ı) =0  cos φ+ısin φ+cos(φ+θ_1 )+ısin(φ+θ_1 )+cos(φ+θ_2 )+ısin(φ+θ_2 )=0  [cos φ+cos(φ+θ_1 )+cos(φ+θ_2 )]+ı[sin φ+sin(φ+θ_1 )+sin(φ+θ_2 )]=0   { ((cos φ+cos(φ+θ_1 )+cos(φ+θ_2 )=0)),((sin φ+sin(φ+θ_1 )+sin(φ+θ_2 )=0)) :}  cos(α+β)=cos α cos β−sin α sin β  sin(α+β)=cos α sin β+cos β sin α   { ((cos φ(1+cos θ_1 +cos θ_2 )−sin φ(sin θ_1 +sin θ_2 )=0)),((sin φ(1+cos θ_1 +cos θ_2 )+cos φ(sin θ_1 +sin θ_2 )=0)) :}  cos φ=a,sin φ=b,1+cos θ_1 +cos θ_2 =x,sin θ_1 +sin θ_2 =y,a^2 +b^2 =1   { ((ax−by=0)),((bx+ay=0)) :}  Δ= determinant ((a,(−b)),(b,a))=a^2 +b^2 =1  Δx= determinant ((0,(−b)),(0,a))=0  Δy= determinant ((a,0),(b,0))=0  x=((Δx)/Δ)=0  y=((Δy)/Δ)=0   { ((1+cos θ_1 +cos θ_2 =0)),((sin θ_1 +sin θ_2 =0)) :}  sin θ_1 =sin −θ_2 ⇔θ_1 =−θ_2 +2πk∨θ_1 =π+θ_2 +2πk,k∈Z  θ_1 =π+θ_2 +2πk⇒1+cos θ_1 +cos θ_2 =1+cos(π+θ_2 +2πk)+cos θ_2 =1−cos θ_2 +cos θ_2 =1≠0  θ_1 =−θ_2 +2πk⇒1+cos θ_1 +cos θ_2 =1+cos(−θ_2 +2πk)+cos θ_2 =1+cos θ_2 +cos θ_2 =1+2cos θ_2 =0  cos θ_2 =−(1/2)  θ_2 =((2π)/3)+2πj∨θ_2 =((4π)/3)+2πj,j∈Z  θ_1 =−((2π)/3)+2π(j+k)∨θ_2 =−((4π)/3)+2π(j+k).  the cube roots of unity are  1,e^(((2π)/3)ı) ,e^(((4π)/3)j) ⇒1,ω,ω^2   ω^n =1,n≡0(mod 3)  ω^n =e^(((2π)/3)ı) ,n≡1(mod 3)  ω^n =e^(((4π)/3)ı) ,n≡2(mod 3)  then for  ω^x +ω^y +ω^z =0  as shown above, them need to have a angle  of 120° betwen them, wich imply that  all the three roots apear, without loss of generaly  take  x≡0(mod 3)  y≡1(mod 3)  z≡2(mod 3)  them  x+y+z≡0+1+2≡3≡0(mod 3)  wich imply that  3∣(x+y+z)

$$\omega={e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}\iota} =\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{3}}+\imath\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{some}\:\mathrm{fact}\:\mathrm{that}\:\mathrm{help} \\ $$$$\boldsymbol{\mathrm{theorem}}: \\ $$$$\mathrm{if}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} ,{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{3}\:\mathrm{unitary}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{betwen}\:\mathrm{them}\:\mathrm{is}\:\mathrm{120}° \\ $$$$\boldsymbol{\mathrm{proof}}: \\ $$$$\mathrm{since}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} ,{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{unitary},\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$$\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1} \\ $$$${z}_{\mathrm{1}} ={e}^{\phi\imath} =\mathrm{cos}\:\phi+\imath\mathrm{sin}\:\phi \\ $$$${z}_{\mathrm{2}} ={e}^{\left(\phi+\theta_{\mathrm{1}} \right)\imath} =\mathrm{cos}\left(\phi+\theta_{\mathrm{1}} \right)+\imath\mathrm{sin}\left(\phi+\theta_{\mathrm{1}} \right) \\ $$$${z}_{\mathrm{3}} ={e}^{\left(\phi+\theta_{\mathrm{2}} \right)\imath} =\mathrm{cos}\left(\phi+\theta_{\mathrm{2}} \right)+\imath\mathrm{sin}\left(\phi+\theta_{\mathrm{2}} \right) \\ $$$${z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} =\mathrm{0} \\ $$$${e}^{\phi\imath} +{e}^{\left(\phi+\theta_{\mathrm{1}} \right)\imath} +{e}^{\left(\phi+\theta_{\mathrm{2}} \right)\imath} =\mathrm{0} \\ $$$$\mathrm{cos}\:\phi+\imath\mathrm{sin}\:\phi+\mathrm{cos}\left(\phi+\theta_{\mathrm{1}} \right)+\imath\mathrm{sin}\left(\phi+\theta_{\mathrm{1}} \right)+\mathrm{cos}\left(\phi+\theta_{\mathrm{2}} \right)+\imath\mathrm{sin}\left(\phi+\theta_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left[\mathrm{cos}\:\phi+\mathrm{cos}\left(\phi+\theta_{\mathrm{1}} \right)+\mathrm{cos}\left(\phi+\theta_{\mathrm{2}} \right)\right]+\imath\left[\mathrm{sin}\:\phi+\mathrm{sin}\left(\phi+\theta_{\mathrm{1}} \right)+\mathrm{sin}\left(\phi+\theta_{\mathrm{2}} \right)\right]=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{cos}\:\phi+\mathrm{cos}\left(\phi+\theta_{\mathrm{1}} \right)+\mathrm{cos}\left(\phi+\theta_{\mathrm{2}} \right)=\mathrm{0}}\\{\mathrm{sin}\:\phi+\mathrm{sin}\left(\phi+\theta_{\mathrm{1}} \right)+\mathrm{sin}\left(\phi+\theta_{\mathrm{2}} \right)=\mathrm{0}}\end{cases} \\ $$$$\mathrm{cos}\left(\alpha+\beta\right)=\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta \\ $$$$\mathrm{sin}\left(\alpha+\beta\right)=\mathrm{cos}\:\alpha\:\mathrm{sin}\:\beta+\mathrm{cos}\:\beta\:\mathrm{sin}\:\alpha \\ $$$$\begin{cases}{\mathrm{cos}\:\phi\left(\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} \right)−\mathrm{sin}\:\phi\left(\mathrm{sin}\:\theta_{\mathrm{1}} +\mathrm{sin}\:\theta_{\mathrm{2}} \right)=\mathrm{0}}\\{\mathrm{sin}\:\phi\left(\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} \right)+\mathrm{cos}\:\phi\left(\mathrm{sin}\:\theta_{\mathrm{1}} +\mathrm{sin}\:\theta_{\mathrm{2}} \right)=\mathrm{0}}\end{cases} \\ $$$$\mathrm{cos}\:\phi={a},\mathrm{sin}\:\phi={b},\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} ={x},\mathrm{sin}\:\theta_{\mathrm{1}} +\mathrm{sin}\:\theta_{\mathrm{2}} ={y},{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\begin{cases}{{ax}−{by}=\mathrm{0}}\\{{bx}+{ay}=\mathrm{0}}\end{cases} \\ $$$$\Delta=\begin{vmatrix}{{a}}&{−{b}}\\{{b}}&{{a}}\end{vmatrix}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Delta{x}=\begin{vmatrix}{\mathrm{0}}&{−{b}}\\{\mathrm{0}}&{{a}}\end{vmatrix}=\mathrm{0} \\ $$$$\Delta{y}=\begin{vmatrix}{{a}}&{\mathrm{0}}\\{{b}}&{\mathrm{0}}\end{vmatrix}=\mathrm{0} \\ $$$${x}=\frac{\Delta{x}}{\Delta}=\mathrm{0} \\ $$$${y}=\frac{\Delta{y}}{\Delta}=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{0}}\\{\mathrm{sin}\:\theta_{\mathrm{1}} +\mathrm{sin}\:\theta_{\mathrm{2}} =\mathrm{0}}\end{cases} \\ $$$$\mathrm{sin}\:\theta_{\mathrm{1}} =\mathrm{sin}\:−\theta_{\mathrm{2}} \Leftrightarrow\theta_{\mathrm{1}} =−\theta_{\mathrm{2}} +\mathrm{2}\pi{k}\vee\theta_{\mathrm{1}} =\pi+\theta_{\mathrm{2}} +\mathrm{2}\pi{k},{k}\in\mathbb{Z} \\ $$$$\theta_{\mathrm{1}} =\pi+\theta_{\mathrm{2}} +\mathrm{2}\pi{k}\Rightarrow\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}+\mathrm{cos}\left(\pi+\theta_{\mathrm{2}} +\mathrm{2}\pi{k}\right)+\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}−\mathrm{cos}\:\theta_{\mathrm{2}} +\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}\neq\mathrm{0} \\ $$$$\theta_{\mathrm{1}} =−\theta_{\mathrm{2}} +\mathrm{2}\pi{k}\Rightarrow\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{1}} +\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}+\mathrm{cos}\left(−\theta_{\mathrm{2}} +\mathrm{2}\pi{k}\right)+\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}+\mathrm{cos}\:\theta_{\mathrm{2}} +\mathrm{cos}\:\theta_{\mathrm{2}} =\mathrm{1}+\mathrm{2cos}\:\theta_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{cos}\:\theta_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\theta_{\mathrm{2}} =\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{j}\vee\theta_{\mathrm{2}} =\frac{\mathrm{4}\pi}{\mathrm{3}}+\mathrm{2}\pi{j},{j}\in\mathbb{Z} \\ $$$$\theta_{\mathrm{1}} =−\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi\left({j}+{k}\right)\vee\theta_{\mathrm{2}} =−\frac{\mathrm{4}\pi}{\mathrm{3}}+\mathrm{2}\pi\left({j}+{k}\right). \\ $$$$\mathrm{the}\:\mathrm{cube}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{are} \\ $$$$\mathrm{1},{e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}\imath} ,{e}^{\frac{\mathrm{4}\pi}{\mathrm{3}}{j}} \Rightarrow\mathrm{1},\omega,\omega^{\mathrm{2}} \\ $$$$\omega^{{n}} =\mathrm{1},{n}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\omega^{{n}} ={e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}\imath} ,{n}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\omega^{{n}} ={e}^{\frac{\mathrm{4}\pi}{\mathrm{3}}\imath} ,{n}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\mathrm{then}\:\mathrm{for} \\ $$$$\omega^{{x}} +\omega^{{y}} +\omega^{{z}} =\mathrm{0} \\ $$$$\mathrm{as}\:\mathrm{shown}\:\mathrm{above},\:\mathrm{them}\:\mathrm{need}\:\mathrm{to}\:\mathrm{have}\:\mathrm{a}\:\mathrm{angle} \\ $$$$\mathrm{of}\:\mathrm{120}°\:\mathrm{betwen}\:\mathrm{them},\:\mathrm{wich}\:\mathrm{imply}\:\mathrm{that} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{roots}\:\mathrm{apear},\:\mathrm{without}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generaly} \\ $$$$\mathrm{take} \\ $$$${x}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${y}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${z}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\mathrm{them} \\ $$$${x}+{y}+{z}\equiv\mathrm{0}+\mathrm{1}+\mathrm{2}\equiv\mathrm{3}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\mathrm{wich}\:\mathrm{imply}\:\mathrm{that} \\ $$$$\mathrm{3}\mid\left({x}+{y}+{z}\right) \\ $$

Commented by Rasheed Soomro last updated on 23/Aug/15

 THANKS. Fully  logical  and full of knowledge.  But too technical! Long tour of logic!  Could there be a simpler  answer?

$$\:\mathrm{THANKS}.\:\mathrm{Fully}\:\:\mathrm{logical}\:\:\mathrm{and}\:\mathrm{full}\:\mathrm{of}\:\mathrm{knowledge}. \\ $$$$\mathrm{But}\:\mathrm{too}\:\mathrm{technical}!\:\mathrm{Long}\:\mathrm{tour}\:\mathrm{of}\:\mathrm{logic}! \\ $$$$\mathrm{Could}\:\mathrm{there}\:\mathrm{be}\:\mathrm{a}\:\mathrm{simple}{r}\:\:\mathrm{answer}? \\ $$$$ \\ $$$$ \\ $$

Answered by Rasheed Soomro last updated on 23/Aug/15

        x,y,z ∈ Z (given)  All the integers wrt modulo 3 are of three types            3k, 3k+1, 3k+2 .   So suppose each of x, y, z is one of above types.  It can easily be shown that           ω^x +ω^y +ω^z =0  ⇒ { ((x, y, z all  are of different types)),(((wrt modulo 3))) :}   [If two or three  are of same type ω^x +ω^y +ω^z ≠0.]           Let one of  x, y, z is equal to 3l, another is equal  to 3m+1 and remaining is equal to 3n+2      ω^x +ω^y +ω^z = ω^(3l) +ω^(3m+1) +ω^(3n+2) =1+ω+ω^2 =0 ⇒  {           x+y+z= 3l+(3m+1)+(3n+2)                           = 3l+3m+3n+3=3(l+m+n+1)           This implies that        3 ∣ (x+y+z)                }  Counter examples that prove that  converse is not true:             1)  Each of x,y,z is of 3k type.                x+y+z=3l+3m+3n=3(l+m+n)  3 ∣ (x+y+z) But ω^x +ω^y +ω^z =ω^(3l) +ω^(3m) +ω^(3n) =1+1+1=3≠0             2) Each of x,y,z is of  3k+1  type.             3) Each of x,y,z is of  3k+2  type.

$$\:\:\:\:\:\:\:\:\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{Z}\:\left(\mathrm{given}\right) \\ $$$$\mathrm{All}\:\mathrm{the}\:\mathrm{integers}\:\mathrm{wrt}\:\mathrm{modulo}\:\mathrm{3}\:\mathrm{are}\:\mathrm{of}\:\mathrm{three}\:\mathrm{types}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3k},\:\mathrm{3k}+\mathrm{1},\:\mathrm{3k}+\mathrm{2}\:. \\ $$$$\:\mathrm{So}\:\mathrm{suppose}\:\mathrm{each}\:\mathrm{of}\:\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{above}\:\mathrm{types}. \\ $$$$\mathrm{It}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{be}\:\mathrm{shown}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:\:\:\:\omega^{\mathrm{x}} +\omega^{\mathrm{y}} +\omega^{\mathrm{z}} =\mathrm{0}\:\:\Rightarrow\begin{cases}{\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\mathrm{all}\:\:\mathrm{are}\:\mathrm{of}\:\mathrm{different}\:\mathrm{types}}\\{\left(\mathrm{wrt}\:\mathrm{modulo}\:\mathrm{3}\right)}\end{cases}\: \\ $$$$\left[\mathrm{If}\:\mathrm{two}\:\mathrm{or}\:\mathrm{three}\:\:\mathrm{are}\:\mathrm{of}\:\mathrm{same}\:\mathrm{type}\:\omega^{\mathrm{x}} +\omega^{\mathrm{y}} +\omega^{\mathrm{z}} \neq\mathrm{0}.\right] \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{Let}\:\mathrm{one}\:\mathrm{of}\:\:\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{3}{l},\:\mathrm{another}\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\mathrm{3}{m}+\mathrm{1}\:\mathrm{and}\:\mathrm{remaining}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{3}{n}+\mathrm{2} \\ $$$$\:\:\:\:\omega^{\mathrm{x}} +\omega^{\mathrm{y}} +\omega^{\mathrm{z}} =\:\omega^{\mathrm{3}{l}} +\omega^{\mathrm{3}{m}+\mathrm{1}} +\omega^{\mathrm{3}{n}+\mathrm{2}} =\mathrm{1}+\omega+\omega^{\mathrm{2}} =\mathrm{0}\:\Rightarrow \\ $$$$\left\{\right. \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\:\mathrm{3}{l}+\left(\mathrm{3}{m}+\mathrm{1}\right)+\left(\mathrm{3}{n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{3}{l}+\mathrm{3}{m}+\mathrm{3}{n}+\mathrm{3}=\mathrm{3}\left({l}+{m}+{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{This}\:\mathrm{implies}\:\mathrm{that}\:\:\:\:\:\:\:\:\mathrm{3}\:\mid\:\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left.\right\} \\ $$$$\mathrm{Counter}\:\mathrm{examples}\:\mathrm{that}\:\mathrm{prove}\:\mathrm{that}\:\:\mathrm{converse}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\right)\:\:\mathrm{Each}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{is}\:\mathrm{of}\:\mathrm{3k}\:\mathrm{type}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3}{l}+\mathrm{3}{m}+\mathrm{3}{n}=\mathrm{3}\left({l}+{m}+{n}\right) \\ $$$$\mathrm{3}\:\mid\:\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\:\mathrm{But}\:\omega^{\mathrm{x}} +\omega^{\mathrm{y}} +\omega^{\mathrm{z}} =\omega^{\mathrm{3}{l}} +\omega^{\mathrm{3}{m}} +\omega^{\mathrm{3}{n}} =\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{3}\neq\mathrm{0} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\:\mathrm{Each}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{is}\:\mathrm{of}\:\:\mathrm{3k}+\mathrm{1}\:\:\mathrm{type}. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\:\mathrm{Each}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{is}\:\mathrm{of}\:\:\mathrm{3k}+\mathrm{2}\:\:\mathrm{type}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com