Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 158523 by gsk2684 last updated on 05/Nov/21

find the number of values of p  for which equation   sin^3 x+1+p^3 −3p sin x =0(p>0)  has a root?

findthenumberofvaluesofp forwhichequation sin3x+1+p33psinx=0(p>0) hasaroot?

Answered by mr W last updated on 05/Nov/21

let t=sin x  −1≤t≤1  t^3 −3pt+p^3 +1=0  Δ=−p^3 +(((p^3 +1)/2))^2 =(((p^3 −1)/2))^2 ≥0  for p^3 >1, i.e. p>1:  t=((((p^3 −1)/2)−((p^3 +1)/2)))^(1/3) −((((p^3 −1)/2)+((p^3 +1)/2)))^(1/3)   t=−1−p  −1≤−1−p≤1  −2≤p≤0  ≠ p>1  for p^3 <1, i.e. p<1:  t=((((1−p^3 )/2)−((p^3 +1)/2)))^(1/3) −((((1−p^3 )/2)+((p^3 +1)/2)))^(1/3)   t=−p−1  −1≤−p−1≤1  −2≤p≤0 ✓  for p^3 =1, i.e. p=1:  t^3 −3t+2=0  t^3 −t^2 +t^2 −t−2t+2=0  (t−1)^2 (t+2)=0  ⇒t=1 ✓, t=−2    summary:  −2≤p≤0 or p=1  for p>0 there is only one value p=1.

lett=sinx 1t1 t33pt+p3+1=0 Δ=p3+(p3+12)2=(p312)20 forp3>1,i.e.p>1: t=p312p3+123p312+p3+123 t=1p 11p1 2p0p>1 forp3<1,i.e.p<1: t=1p32p3+1231p32+p3+123 t=p1 1p11 2p0 forp3=1,i.e.p=1: t33t+2=0 t3t2+t2t2t+2=0 (t1)2(t+2)=0 t=1,t=2 summary: 2p0orp=1 forp>0thereisonlyonevaluep=1.

Commented bygsk2684 last updated on 12/Nov/21

thank you sir (°⌣°)

thankyousir(°°)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com