Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15856 by Tinkutara last updated on 14/Jun/17

A particle is moving along a straight  line with uniform acceleration has  velocities 7 m/s at P and 17 m/s at Q.  If R is the midpoint of PQ, then the  average velocity between P and R is?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{with}\:\mathrm{uniform}\:\mathrm{acceleration}\:\mathrm{has} \\ $$$$\mathrm{velocities}\:\mathrm{7}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:{P}\:\mathrm{and}\:\mathrm{17}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:{Q}. \\ $$$$\mathrm{If}\:{R}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PQ},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{average}\:\mathrm{velocity}\:\mathrm{between}\:{P}\:\mathrm{and}\:{R}\:\mathrm{is}? \\ $$

Answered by ajfour last updated on 14/Jun/17

(v_(PR) )_(avg) =(v_P /2)(1+(1/(√2))(√(1+(v_Q ^2 /v_P ^2 ))) ) .

$$\left({v}_{{PR}} \right)_{{avg}} =\frac{{v}_{{P}} }{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{\mathrm{1}+\frac{{v}_{{Q}} ^{\mathrm{2}} }{{v}_{{P}} ^{\mathrm{2}} }}\:\right)\:. \\ $$

Commented by Tinkutara last updated on 14/Jun/17

Can you tell the final answer please?

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{tell}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{please}? \\ $$

Commented by ajfour last updated on 14/Jun/17

   10m/s .

$$\:\:\:\mathrm{10}{m}/{s}\:. \\ $$

Commented by Tinkutara last updated on 14/Jun/17

Do you mean that for calculating this,  the formula is v_(av)  between P and R =  ((v_P  + v_R )/2) ? I have calculated v_R .

$$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{that}\:\mathrm{for}\:\mathrm{calculating}\:\mathrm{this}, \\ $$$$\mathrm{the}\:\mathrm{formula}\:\mathrm{is}\:{v}_{\mathrm{av}} \:\mathrm{between}\:{P}\:\mathrm{and}\:{R}\:= \\ $$$$\frac{{v}_{{P}} \:+\:{v}_{{R}} }{\mathrm{2}}\:?\:\mathrm{I}\:\mathrm{have}\:\mathrm{calculated}\:{v}_{{R}} . \\ $$

Commented by ajfour last updated on 14/Jun/17

v_R =(√((v_P ^2 +v_Q ^2 )/2))   =13m/s .

$${v}_{{R}} =\sqrt{\frac{{v}_{{P}} ^{\mathrm{2}} +{v}_{{Q}} ^{\mathrm{2}} }{\mathrm{2}}}\:\:\:=\mathrm{13}{m}/{s}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com