All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 158596 by mnjuly1970 last updated on 06/Nov/21
calculate:Ω=∫0π41+tan4(x)cot2(x)dx=?
Answered by puissant last updated on 06/Nov/21
Ω=∫0π41+tan4(x)cotan2(x)dx=∫0π4{tan2x+tan6x}dxu=tanx→du=(1+tan2x)dx→dx=du1+u2⇒Ω=∫01u2+u61+u2du=∫01u2+1−11+u2du+∫01u61+u2duΩ=∫01{1−11+u2}dx+∫01{u4−u2+1−11+u2}du⇒Ω=1−π4+15−13+1−π4=2815−π2.Ω=∫011+tan2(x)cotan2(x)dx=2815−π2................Lepuissant...............
Terms of Service
Privacy Policy
Contact: info@tinkutara.com