Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158598 by HongKing last updated on 06/Nov/21

Commented by MJS_new last updated on 06/Nov/21

let y=px∧z=qx then it′s easy to solve. I get  x=(6)^(1/3) ∧y=−(x/3)∧z=−(x/2)

$$\mathrm{let}\:{y}={px}\wedge{z}={qx}\:\mathrm{then}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}.\:\mathrm{I}\:\mathrm{get} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\mathrm{6}}\wedge{y}=−\frac{{x}}{\mathrm{3}}\wedge{z}=−\frac{{x}}{\mathrm{2}} \\ $$

Commented by HongKing last updated on 06/Nov/21

Yes my dear Ser  I am interested in you creative solution  if possible please

$$\mathrm{Yes}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser} \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{interested}\:\mathrm{in}\:\mathrm{you}\:\mathrm{creative}\:\mathrm{solution} \\ $$$$\mathrm{if}\:\mathrm{possible}\:\mathrm{please} \\ $$

Answered by Rasheed.Sindhi last updated on 06/Nov/21

What′s wrong in the following process:   { ((−x^2 (y−z)=−1)),((y^2 (z−x)=−1)),((z^2 (x−y)=2)) :}  Adding all the three:  −x^2 (y−z)+y^2 (z−x)+z^2 (x−y)=0  (y−z)(−x^2 −xy+yz−zx)=0  y−z=0 ∣ −x^2 −xy+yz−zx=0  y=z ????????????????  Obviously false!

$${What}'{s}\:{wrong}\:{in}\:{the}\:{following}\:{process}: \\ $$$$\begin{cases}{−{x}^{\mathrm{2}} \left({y}−{z}\right)=−\mathrm{1}}\\{{y}^{\mathrm{2}} \left({z}−{x}\right)=−\mathrm{1}}\\{{z}^{\mathrm{2}} \left({x}−{y}\right)=\mathrm{2}}\end{cases} \\ $$$${Adding}\:{all}\:{the}\:{three}: \\ $$$$−{x}^{\mathrm{2}} \left({y}−{z}\right)+{y}^{\mathrm{2}} \left({z}−{x}\right)+{z}^{\mathrm{2}} \left({x}−{y}\right)=\mathrm{0} \\ $$$$\left({y}−{z}\right)\left(−{x}^{\mathrm{2}} −{xy}+{yz}−{zx}\right)=\mathrm{0} \\ $$$${y}−{z}=\mathrm{0}\:\mid\:−{x}^{\mathrm{2}} −{xy}+{yz}−{zx}=\mathrm{0} \\ $$$${y}={z}\:???????????????? \\ $$$$\boldsymbol{\mathrm{O}}\mathrm{bviously}\:\mathrm{false}! \\ $$

Commented by HongKing last updated on 07/Nov/21

how my dear Ser

$$\mathrm{how}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Commented by mr W last updated on 07/Nov/21

y−z=0 or −x^2 −xy+yz−zx=0  y−z=0 must be rejected.

$${y}−{z}=\mathrm{0}\:{or}\:−{x}^{\mathrm{2}} −{xy}+{yz}−{zx}=\mathrm{0} \\ $$$${y}−{z}=\mathrm{0}\:{must}\:{be}\:{rejected}. \\ $$

Commented by Rasheed.Sindhi last updated on 07/Nov/21

Sir,doesn′t ′A or B′ mean:  A or B is true when  any one or both are true  ?

$${Sir},{doesn}'{t}\:'{A}\:{or}\:{B}'\:{mean}: \\ $$$${A}\:{or}\:{B}\:{is}\:{true}\:{when} \\ $$$$\boldsymbol{{any}}\:\boldsymbol{{one}}\:{or}\:{both}\:{are}\:{true}\:\:? \\ $$

Commented by mr W last updated on 07/Nov/21

because x^2 (y−z)=1 is given.

$${because}\:{x}^{\mathrm{2}} \left({y}−{z}\right)=\mathrm{1}\:{is}\:{given}. \\ $$

Commented by Rasheed.Sindhi last updated on 07/Nov/21

Gratefull Sir!

$${Gratefull}\:{Sir}! \\ $$

Commented by mr W last updated on 07/Nov/21

A×B=0  means only one from A and B must  be zero. the other may be zero, but  mustn′t.

$${A}×{B}=\mathrm{0} \\ $$$${means}\:{only}\:{one}\:{from}\:{A}\:{and}\:{B}\:{must} \\ $$$${be}\:{zero}.\:{the}\:{other}\:{may}\:{be}\:{zero},\:{but} \\ $$$${mustn}'{t}. \\ $$

Commented by Rasheed.Sindhi last updated on 07/Nov/21

Sir, then why is  y−z=0  rejected?

$${Sir},\:{then}\:{why}\:{is}\:\:{y}−{z}=\mathrm{0}\:\:{rejected}? \\ $$

Answered by mr W last updated on 06/Nov/21

((y^2 (z−x))/(x^2 (y−z)))=−1  ((y/x))^2 (((z/x)−1)/((y/x)−(z/x)))=−1  let p=(y/x), q=(z/x)  p^2 (q−1)=−(p−q)  (p−1)[(p+1)q−p]=0   ...(i)  ((z^2 (x−y))/(x^2 (y−z)))=2  ((z/x))^2 ((1−(y/x))/((y/x)−(z/x)))=2  q^2 (1−p)=2(p−q)  q(q+2)=(2+q^2 )p  p=((q(q+2))/(2+q^2 ))   ...(ii)  case 1:  from (i): p=1  from (ii): q=1  ⇒no solution  case 2:  from (i): (p+1)q−p=0 ⇒p=(q/(1−q))  ((q(q+2))/(2+q^2 ))=(q/(1−q))  q≠0  ((q+2)/(2+q^2 ))=(1/(1−q))  2q^2 +q=0  2q+1=0  ⇒q=−(1/2)  ⇒p=((−(1/2))/(1+(1/2)))=−(1/3)  x^2 (−(x/3)+(x/2))=1  (x^3 /6)=1  ⇒x=(6)^(1/3)   ⇒y=−((6)^(1/3) /3)  ⇒z=−((6)^(1/3) /2)

$$\frac{{y}^{\mathrm{2}} \left({z}−{x}\right)}{{x}^{\mathrm{2}} \left({y}−{z}\right)}=−\mathrm{1} \\ $$$$\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} \frac{\frac{{z}}{{x}}−\mathrm{1}}{\frac{{y}}{{x}}−\frac{{z}}{{x}}}=−\mathrm{1} \\ $$$${let}\:{p}=\frac{{y}}{{x}},\:{q}=\frac{{z}}{{x}} \\ $$$${p}^{\mathrm{2}} \left({q}−\mathrm{1}\right)=−\left({p}−{q}\right) \\ $$$$\left({p}−\mathrm{1}\right)\left[\left({p}+\mathrm{1}\right){q}−{p}\right]=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{{z}^{\mathrm{2}} \left({x}−{y}\right)}{{x}^{\mathrm{2}} \left({y}−{z}\right)}=\mathrm{2} \\ $$$$\left(\frac{{z}}{{x}}\right)^{\mathrm{2}} \frac{\mathrm{1}−\frac{{y}}{{x}}}{\frac{{y}}{{x}}−\frac{{z}}{{x}}}=\mathrm{2} \\ $$$${q}^{\mathrm{2}} \left(\mathrm{1}−{p}\right)=\mathrm{2}\left({p}−{q}\right) \\ $$$${q}\left({q}+\mathrm{2}\right)=\left(\mathrm{2}+{q}^{\mathrm{2}} \right){p} \\ $$$${p}=\frac{{q}\left({q}+\mathrm{2}\right)}{\mathrm{2}+{q}^{\mathrm{2}} }\:\:\:...\left({ii}\right) \\ $$$${case}\:\mathrm{1}: \\ $$$${from}\:\left({i}\right):\:{p}=\mathrm{1} \\ $$$${from}\:\left({ii}\right):\:{q}=\mathrm{1} \\ $$$$\Rightarrow{no}\:{solution} \\ $$$${case}\:\mathrm{2}: \\ $$$${from}\:\left({i}\right):\:\left({p}+\mathrm{1}\right){q}−{p}=\mathrm{0}\:\Rightarrow{p}=\frac{{q}}{\mathrm{1}−{q}} \\ $$$$\frac{{q}\left({q}+\mathrm{2}\right)}{\mathrm{2}+{q}^{\mathrm{2}} }=\frac{{q}}{\mathrm{1}−{q}} \\ $$$${q}\neq\mathrm{0} \\ $$$$\frac{{q}+\mathrm{2}}{\mathrm{2}+{q}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}−{q}} \\ $$$$\mathrm{2}{q}^{\mathrm{2}} +{q}=\mathrm{0} \\ $$$$\mathrm{2}{q}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{q}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{p}=\frac{−\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}^{\mathrm{2}} \left(−\frac{{x}}{\mathrm{3}}+\frac{{x}}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{6}}=\mathrm{1} \\ $$$$\Rightarrow{x}=\sqrt[{\mathrm{3}}]{\mathrm{6}} \\ $$$$\Rightarrow{y}=−\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{3}} \\ $$$$\Rightarrow{z}=−\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}} \\ $$

Commented by HongKing last updated on 07/Nov/21

perfect my dear Ser, thank you very much

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$

Commented by Tawa11 last updated on 07/Nov/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com