Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 158622 by ajfour last updated on 06/Nov/21

Commented by ajfour last updated on 06/Nov/21

Find maximum side length  of inscribed square (s_(max) ).

$${Find}\:{maximum}\:{side}\:{length} \\ $$$${of}\:{inscribed}\:{square}\:\left({s}_{{max}} \right). \\ $$

Answered by mr W last updated on 07/Nov/21

Commented by mr W last updated on 07/Nov/21

AB=((s/2)/h)×(√(a^2 −h^2 ))  CD=((s/2)/h)×(√(b^2 −h^2 ))  AD=(h/(h−s/2))×s  AD=AB+BC+CD  ((s/2)/h)×(√(a^2 −h^2 ))+((s/2)/h)×(√(b^2 −h^2 ))+s=(h/(h−s/2))×s  (√(a^2 −h^2 ))+(√(b^2 −h^2 ))+2h=((4h^2 )/(2h−s))  s=2h−((4h^2 )/( (√(a^2 −h^2 ))+(√(b^2 −h^2 ))+2h))  let λ=(s/a), μ=(b/a), ξ=(h/a)  λ=2ξ−((4ξ^2 )/( (√(1−ξ^2 ))+(√(μ^2 −ξ^2 ))+2ξ))  (dλ/dξ)=0 for λ_(max)   ...

$${AB}=\frac{{s}/\mathrm{2}}{{h}}×\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} } \\ $$$${CD}=\frac{{s}/\mathrm{2}}{{h}}×\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} } \\ $$$${AD}=\frac{{h}}{{h}−{s}/\mathrm{2}}×{s} \\ $$$${AD}={AB}+{BC}+{CD} \\ $$$$\frac{{s}/\mathrm{2}}{{h}}×\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\frac{{s}/\mathrm{2}}{{h}}×\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} }+{s}=\frac{{h}}{{h}−{s}/\mathrm{2}}×{s} \\ $$$$\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\mathrm{2}{h}=\frac{\mathrm{4}{h}^{\mathrm{2}} }{\mathrm{2}{h}−{s}} \\ $$$${s}=\mathrm{2}{h}−\frac{\mathrm{4}{h}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\mathrm{2}{h}} \\ $$$${let}\:\lambda=\frac{{s}}{{a}},\:\mu=\frac{{b}}{{a}},\:\xi=\frac{{h}}{{a}} \\ $$$$\lambda=\mathrm{2}\xi−\frac{\mathrm{4}\xi^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−\xi^{\mathrm{2}} }+\sqrt{\mu^{\mathrm{2}} −\xi^{\mathrm{2}} }+\mathrm{2}\xi} \\ $$$$\frac{{d}\lambda}{{d}\xi}=\mathrm{0}\:{for}\:\lambda_{{max}} \\ $$$$... \\ $$

Commented by mr W last updated on 07/Nov/21

Commented by ajfour last updated on 07/Nov/21

Thank you sir. I′ll think of  some better elliptic way.

$$\mathbb{T}\mathrm{hank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{think}\:\mathrm{of} \\ $$$$\mathrm{some}\:\mathrm{better}\:\mathrm{elliptic}\:\mathrm{way}. \\ $$

Commented by ajfour last updated on 07/Nov/21

s^2 =h(√(a^2 −h^2 ))+h(√(b^2 −h^2 ))            −{(s/2)p+(s/2)q+s(h−(s/2))}  p+q+s=(√(a^2 −h^2 ))+(√(b^2 −h^2 ))  ⇒  hs=(h+(s/2))((√(a^2 −h^2 ))+(√(b^2 −h^2 )))  ⇒   (1/s)=(1/( (√(a^2 −h^2 ))+(√(b^2 −h^2 ))))−(1/(2h))                     ...............

$${s}^{\mathrm{2}} ={h}\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+{h}\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:−\left\{\frac{{s}}{\mathrm{2}}{p}+\frac{{s}}{\mathrm{2}}{q}+{s}\left({h}−\frac{{s}}{\mathrm{2}}\right)\right\} \\ $$$${p}+{q}+{s}=\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{hs}=\left({h}+\frac{{s}}{\mathrm{2}}\right)\left(\sqrt{{a}^{\mathrm{2}} −{h}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{h}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow \\ $$$$\:\frac{\mathrm{1}}{\boldsymbol{{s}}}=\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{h}}^{\mathrm{2}} }+\sqrt{\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{h}}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{h}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............... \\ $$

Commented by Tawa11 last updated on 07/Nov/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com