Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 158664 by mr W last updated on 07/Nov/21

Commented by mr W last updated on 07/Nov/21

AQ=CP=BR  find the smallest area of ΔPQR   in terms of a, b.

AQ=CP=BRfindthesmallestareaofΔPQRintermsofa,b.

Commented by Tawa11 last updated on 07/Nov/21

Great sir

Greatsir

Commented by Tawa11 last updated on 16/Nov/21

Great sir

Greatsir

Answered by ajfour last updated on 07/Nov/21

C origin.    AQ=CP=BR=r  a^2 +b^2 =s^2         Equation of AB: (x/a)+(y/b)=1  P(0,r)  ; R(a−((ar)/s), ((br)/s)) ; Q(0,b−r)  2A_(△PQR) =ab−r(b−r)            −((rb)/s)(a−r)−r(a−((ar)/s))  ((d(2A_(△PQR) ))/dr)=0   ⇒   2r−b+((2br)/s)−((ab)/s)−a+((2ar)/s)=0  ⇒  2r(1+((a+b)/s))=a+b+((ab)/s)    2r=(((a+b)(√(a^2 +b^2 ))+ab)/( ((√(a^2 +b^2 ))+ab)))  2A_(△PQR) =(((a+b)/( (√(a^2 +b^2 ))))+1)r^2           −(((ab)/( (√(a^2 +b^2 ))))+a+b)r+ab     =ab−(((a+b)/s)+1)r^2   hence    A_(△PQR_(min) )  =    ((ab)/2)−(1/8)(((a+b)/s)+1)(((a+b+((ab)/s))/(1+((a+b)/s))))^2       ∀  s=(√(a^2 +b^2 ))  but let me check  a=b=(√2)  A_(min) =1−((((√2)+1))/8)(((2(√2)+1)/(1+(√2))))^2          =1−(((9+4(√2)))/(8(1+(√2))))         =1−(((9+4(√2))((√2)−1))/8)         =1−(((5(√2)−1))/8)         =((9−5(√2))/8)

Corigin.AQ=CP=BR=ra2+b2=s2EquationofAB:xa+yb=1P(0,r);R(aars,brs);Q(0,br)2APQR=abr(br)rbs(ar)r(aars)d(2APQR)dr=02rb+2brsabsa+2ars=02r(1+a+bs)=a+b+abs2r=(a+b)a2+b2+ab(a2+b2+ab)2APQR=(a+ba2+b2+1)r2(aba2+b2+a+b)r+ab=ab(a+bs+1)r2henceAPQRmin=ab218(a+bs+1)(a+b+abs1+a+bs)2s=a2+b2butletmechecka=b=2Amin=1(2+1)8(22+11+2)2=1(9+42)8(1+2)=1(9+42)(21)8=1(521)8=9528

Commented by mr W last updated on 07/Nov/21

thanks sir!  it′s correct!

thankssir!itscorrect!

Commented by ajfour last updated on 07/Nov/21

isnt max=((ab)/2)  itself?

isntmax=ab2itself?

Commented by mr W last updated on 07/Nov/21

yes!

yes!

Answered by mr W last updated on 07/Nov/21

c=(√(a^2 +b^2 ))  AQ=BR=CP=t  (A_(ΔPQR) /A_(ΔABC) )=1−((t(b−t))/(ab))−((t(a−t))/(ac))−((t(c−t))/(bc))  (A_(ΔPQR) /A_(ΔABC) )=1−((t(ab+bc+ca)−t^2 (a+b+c))/(abc))  such that A_(ΔPQR)  is minimum:    (d/dt)((A_(ΔPQR) /A_(ΔABC) ))=0  ⇒(ab+bc+ca)−2(a+b+c)t=0   ⇒t=((ab+bc+ca)/(2(a+b+c)))  ((max. A_(ΔPQR) )/A_(ΔABC) )=1−(((ab+bc+ca)^2 )/(4abc(a+b+c)))  max. A_(ΔPQR) =((ab)/2)−(([ab+(a+b)(√(a^2 +b^2 ))]^2 )/(8(√(a^2 +b^2 ))(a+b+(√(a^2 +b^2 )))))

c=a2+b2AQ=BR=CP=tAΔPQRAΔABC=1t(bt)abt(at)act(ct)bcAΔPQRAΔABC=1t(ab+bc+ca)t2(a+b+c)abcsuchthatAΔPQRisminimum:ddt(AΔPQRAΔABC)=0(ab+bc+ca)2(a+b+c)t=0t=ab+bc+ca2(a+b+c)max.AΔPQRAΔABC=1(ab+bc+ca)24abc(a+b+c)max.AΔPQR=ab2[ab+(a+b)a2+b2]28a2+b2(a+b+a2+b2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com