Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158724 by HongKing last updated on 08/Nov/21

let  a>b>c>0  solve in R   { ((ax + by + cz = a)),((bx + cy + az = b)),((cx + ay + bz = c)) :}

leta>b>c>0solveinR {ax+by+cz=abx+cy+az=bcx+ay+bz=c

Answered by ajfour last updated on 08/Nov/21

x+y+z=1  ax+by+c(1−x−y)=a  ⇒ (a−c)x+(b−c)y=a−c  x+(((b−c)/(a−c)))y=1  (a−c)x+(b−a)y     +(c−b)(1−x−y)=a−c  ⇒ (a+b−2c)x+(2b−a−c)y                =a+b−2c  ⇒ x−y=1  ⇒  y+1+(((b−c)/(a−c)))y=1  ⇒  y=0,  x=1, z=0 ∙

x+y+z=1 ax+by+c(1xy)=a (ac)x+(bc)y=ac x+(bcac)y=1 (ac)x+(ba)y +(cb)(1xy)=ac (a+b2c)x+(2bac)y =a+b2c xy=1 y+1+(bcac)y=1 y=0,x=1,z=0

Commented byHongKing last updated on 08/Nov/21

thank you dear Ser cool

thankyoudearSercool

Answered by som(math1967) last updated on 08/Nov/21

D= determinant ((a,b,c),(b,c,a),(c,a,b))=a(bc−a^2 )−b(b^2 −ca)+c(ab−c^2 )  =3abc−a^3 −b^3 −c^3   D_1 = determinant ((a,b,c),((b ),c,a),(c,a,b))=abc−a^3 −b^3 +abc+abc−c^3   =3abc−a^3 −b^3 −c^3   D_2 = determinant ((a,a,c),(b,b,a),(c,c,b))=0 [C_(1,) C_2  identical]  D_3 = determinant ((a,b,a),(b,c,b),(c,a,c))=0[C_1 ,C_3  identical]  x=(D_1 /D)=1,y=(D_2 /D)=0,z=(D_3 /D)=0  a>b>c>0 ∴( 3abc−a^3 −b^3 −c^3 )≠0

D=|abcbcacab|=a(bca2)b(b2ca)+c(abc2) =3abca3b3c3 D1=|abcbcacab|=abca3b3+abc+abcc3 =3abca3b3c3 D2=|aacbbaccb|=0[C1,C2identical] D3=|ababcbcac|=0[C1,C3identical] x=D1D=1,y=D2D=0,z=D3D=0 a>b>c>0(3abca3b3c3)0

Commented byHongKing last updated on 08/Nov/21

thank you dear Ser cool

thankyoudearSercool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com