Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 158749 by ajfour last updated on 08/Nov/21

Commented by ajfour last updated on 08/Nov/21

Find extreme values of R.

FindextremevaluesofR.

Answered by mr W last updated on 08/Nov/21

Commented by mr W last updated on 08/Nov/21

let c=a+b  let μ=(b/a), λ=(R/a)  BD=a+c sin θ  DC=(√((R−b)^2 −(a+c sin θ)^2 ))  CE=(√((R−a)^2 −a^2 ))=(√(R^2 −2aR))  DE=BF=c cos θ  c cos θ=(√((R−b)^2 −(a+c sin θ)^2 ))+(√(R^2 −2aR))  c cos θ−(√(R^2 −2aR))=(√((R−b)^2 −(a+c sin θ)^2 ))  c^2  cos^2  θ−2c cos θ(√(R^2 −2aR))=2(a−b)R+b^2 −(a+c sin θ)^2   a(1+sin θ)−((a−b)/(a+b))R=cos θ(√(R^2 −2aR))  (1+sin θ)−((1−μ)/(1+μ))λ=cos θ(√(λ^2 −2λ))  (((1−μ)/(1+μ)))^2 λ^2 +(1+sin θ)^2 −2(((1−μ)/(1+μ)))(1+sin θ)λ=cos^2  θλ^2 −2cos^2  θλ  [(((1−μ)/(1+μ)))^2 −cos^2  θ]λ^2 −2[(1+sin θ)(((1−μ)/(1+μ)))−cos^2  θ]λ+(1+sin θ)^2 =0  [(((1−μ)/(1+μ)))^2 −cos^2  θ]λ^2 −2(1+sin θ)(sin θ−((2μ)/(1+μ)))λ+(1+sin θ)^2 =0  λ=(((1+sin θ)(sin θ−((2μ)/(1+μ)))−(1+sin θ)(√((sin θ−((2μ)/(1+μ)))^2 −(((1−μ)/(1+μ)))^2 +cos^2  θ)))/((((1−μ)/(1+μ)))^2 −cos^2  θ))  λ=(((1+sin θ){sin θ−((2μ)/(1+μ))−(√((4μ(1−sin θ))/(1+μ)))})/((((1−μ)/(1+μ)))^2 −cos^2  θ))  or  λ=(((1+sin θ)[ξ+(√(2ξ(1−sin θ)))−sin θ])/(ξ(2−ξ)−sin^2  θ))  with ξ=((2μ)/(1+μ))=((2b)/(a+b))

letc=a+bletμ=ba,λ=RaBD=a+csinθDC=(Rb)2(a+csinθ)2CE=(Ra)2a2=R22aRDE=BF=ccosθccosθ=(Rb)2(a+csinθ)2+R22aRccosθR22aR=(Rb)2(a+csinθ)2c2cos2θ2ccosθR22aR=2(ab)R+b2(a+csinθ)2a(1+sinθ)aba+bR=cosθR22aR(1+sinθ)1μ1+μλ=cosθλ22λ(1μ1+μ)2λ2+(1+sinθ)22(1μ1+μ)(1+sinθ)λ=cos2θλ22cos2θλ[(1μ1+μ)2cos2θ]λ22[(1+sinθ)(1μ1+μ)cos2θ]λ+(1+sinθ)2=0[(1μ1+μ)2cos2θ]λ22(1+sinθ)(sinθ2μ1+μ)λ+(1+sinθ)2=0λ=(1+sinθ)(sinθ2μ1+μ)(1+sinθ)(sinθ2μ1+μ)2(1μ1+μ)2+cos2θ(1μ1+μ)2cos2θλ=(1+sinθ){sinθ2μ1+μ4μ(1sinθ)1+μ}(1μ1+μ)2cos2θorλ=(1+sinθ)[ξ+2ξ(1sinθ)sinθ]ξ(2ξ)sin2θwithξ=2μ1+μ=2ba+b

Commented by ajfour last updated on 08/Nov/21

           Thank you Sir       Seems satisfactory!

ThankyouSirSeemssatisfactory!

Commented by mr W last updated on 08/Nov/21

Commented by mr W last updated on 08/Nov/21

Commented by mr W last updated on 08/Nov/21

Commented by mr W last updated on 08/Nov/21

Commented by mr W last updated on 08/Nov/21

usually R_(min)  exists.  but R_(max)  doesn′t exist.

usuallyRminexists.butRmaxdoesntexist.

Commented by mr W last updated on 09/Nov/21

Commented by ajfour last updated on 09/Nov/21

The situation is:  a≥b. A is  in contact with ground and  B. B in contact with wall  and A;(just the 1^(st)  quadrant).

Thesituationis:ab.AisincontactwithgroundandB.BincontactwithwallandA;(justthe1stquadrant).

Commented by mr W last updated on 09/Nov/21

if both circles a and b are only in  quadrant I and a>b, then  −sin^(−1) ((a−b)/(a+b))≤θ≤cos^(−1) ((a−b)/(a+b))

ifbothcirclesaandbareonlyinquadrantIanda>b,thensin1aba+bθcos1aba+b

Commented by mr W last updated on 09/Nov/21

Commented by Tawa11 last updated on 16/Nov/21

Great sir

Greatsir

Answered by ajfour last updated on 08/Nov/21

(R−b)cos φ+(a+b)cos ψ      =R−a  (R−b)sin φ=(a+b)sin ψ  φ+ψ−θ=(π/2)  sin φcos ψ+cos φsin ψ=cos θ  {(((a+b)/(R−b)))cos ψ+cos φ}sin ψ                     =cos θ  ⇒(R−a)sin ψ=(R−b)cos θ  {cos ψ+(((R−b)/(a+b)))cos φ}sin φ                    =cos θ  ⇒ (R−a)sin φ=(a+b)cos θ  cos φcos ψ−sin φsin ψ=sin θ  sin φsin ψ=f(R,θ)                 =(((R−b)(a+b)cos^2 θ)/((R−a)^2 ))  (sin φsin ψ+sin θ)^2       =(1−sin^2 φ)(1−sin^2 ψ)  (f+sin θ)^2 =(1−f_1 ^( 2) )(1−f_2 ^( 2) )  ⇒  h(θ,R)=0

(Rb)cosϕ+(a+b)cosψ=Ra(Rb)sinϕ=(a+b)sinψϕ+ψθ=π2sinϕcosψ+cosϕsinψ=cosθ{(a+bRb)cosψ+cosϕ}sinψ=cosθ(Ra)sinψ=(Rb)cosθ{cosψ+(Rba+b)cosϕ}sinϕ=cosθ(Ra)sinϕ=(a+b)cosθcosϕcosψsinϕsinψ=sinθsinϕsinψ=f(R,θ)=(Rb)(a+b)cos2θ(Ra)2(sinϕsinψ+sinθ)2=(1sin2ϕ)(1sin2ψ)(f+sinθ)2=(1f12)(1f22)h(θ,R)=0

Commented by ajfour last updated on 08/Nov/21

(R−a)sin ψ=(R−b)cos θ  ⇒  sin ψ=(((z−c)/(z−1)))cos θ   (R−a)sin φ=(a+b)cos θ  ⇒  sin φ=(((z−1)/(1+c)))cos θ  (sin φsin ψ+sin θ)^2       =(1−sin^2 φ)(1−sin^2 ψ)  ⇒  sin^2 θ+2sin θ(sin φ+sin ψ)     +sin^2 φ+sin^2 ψ=1    ⇒   (sin φ+sin θ)^2 +(sin ψ+sin θ)^2        =1+sin^2 θ  (((z−1)/(1+c))cos θ+sin θ)^2 +(((z−c)/(z−1))cos θ+sin θ)^2        =1+sin^2 θ  let  tan θ=1+m  {((z−1+(1+mc)+(c+m))/(1+c))}^2 {(((2+m)(z−1)+(1−c))/(z−1))}^2                      =1+2(1+m)^2   z−1=(R/a)−1=x  {x+(1+c)(1+m)}^2 {(2+m)x+(1−c)}^2     =(1+c)^2 {2(m+1)^2 +1}x^2       (1+c)(1+m)=A  (((1−c)/(2+m)))=B  (((1+c)/(2+m)))^2 {2(m+1)^2 +1}=C  (x+A)^2 (x+B)^2 =Cx^2   differentiating  ((dA/dm))(x+A)(x+B)^2 +((dB/dm))(x+B)(x+A)^2        =(x^2 /2)(dC/dm)  ⇒  (dA/(x+A))+(dB/(x+B))=(dC/(2C))  ..............................................

(Ra)sinψ=(Rb)cosθsinψ=(zcz1)cosθ(Ra)sinϕ=(a+b)cosθsinϕ=(z11+c)cosθ(sinϕsinψ+sinθ)2=(1sin2ϕ)(1sin2ψ)sin2θ+2sinθ(sinϕ+sinψ)+sin2ϕ+sin2ψ=1(sinϕ+sinθ)2+(sinψ+sinθ)2=1+sin2θ(z11+ccosθ+sinθ)2+(zcz1cosθ+sinθ)2=1+sin2θlettanθ=1+m{z1+(1+mc)+(c+m)1+c}2{(2+m)(z1)+(1c)z1}2=1+2(1+m)2z1=Ra1=x{x+(1+c)(1+m)}2{(2+m)x+(1c)}2=(1+c)2{2(m+1)2+1}x2(1+c)(1+m)=A(1c2+m)=B(1+c2+m)2{2(m+1)2+1}=C(x+A)2(x+B)2=Cx2differentiating(dAdm)(x+A)(x+B)2+(dBdm)(x+B)(x+A)2=x22dCdmdAx+A+dBx+B=dC2C..............................................

Terms of Service

Privacy Policy

Contact: info@tinkutara.com