Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158759 by HongKing last updated on 08/Nov/21

Prove that:  lim_(n→∞) ((Σ_(k=0) ^(2n) (-1)^k  ∙ ((4n + 1)/(4n - 2k + 1)) (((2n)),(( k)) )))^(1/n)  = 1

Provethat:limn2nk=0(1)k4n+14n2k+1(2nk)n=1

Answered by mindispower last updated on 08/Nov/21

Σ_(k≥0) ^(2n) (−1)^k .((4n+1)/(4n−2k+1)) (((2n)),((  k)) )  =Σ_(k=0) ^(2n) (−1)^k ((4n+1)/(2k+1)) (((2n)),(k) )=(4n+1)Σ_(k=0) ^(2n) ∫_0 ^1 .(−x^2 )^k  (((2n)),((  k)) )dx  =(4n+1)∫_0 ^1 (−x^2 )^k  (((2n)),(k) )dx=(4n+1)∫^1 _0 (1−x^2 )^(2n) dx  =(4n+1)∫_0 ^1 (1−t)^(2n) .t^(−(1/2)) (dt/2)  =(2n+(1/2))β(2n+1,(1/2))=((Γ(2n+1)Γ((1/2)))/(Γ(2n+1+(1/2))))  =((Γ(2n+1)Γ((1/2)))/(Γ(2n+(1/2))))  lim_(n→∞) .(((Γ((1/2))Γ(2n+1))/(Γ(2n+(1/2))))^(1/2)   Γ(2n+(1/2))∼(√(2π)).(2n)^(2n) e^(−2n)   Γ(2n+1)∼(√(2π))(2n+1)^(2n+(1/2)) e^(−2n)   ⇔lim_(n→∞) ((((√π). (2n+1)^(2n+(1/2)) )/((2n)^(2n) )))^(1/n)   =lim_(n→∞) .π^(1/(2n)) .(((2n+1)/(2n)))^2 .(2n+1)^(1/(2n))   =lim_(n→∞)  π^0 .(1)^2 .e^((ln(1+2n))/(2n)) =1.1.1=1

2nk0(1)k.4n+14n2k+1(2nk)=2nk=0(1)k4n+12k+1(2nk)=(4n+1)2nk=001.(x2)k(2nk)dx=(4n+1)01(x2)k(2nk)dx=(4n+1)01(1x2)2ndx=(4n+1)01(1t)2n.t12dt2=(2n+12)β(2n+1,12)=Γ(2n+1)Γ(12)Γ(2n+1+12)=Γ(2n+1)Γ(12)Γ(2n+12)limn.(Γ(12)Γ(2n+1)Γ(2n+12)12Γ(2n+12)2π.(2n)2ne2nΓ(2n+1)2π(2n+1)2n+12e2nlimn(π.(2n+1)2n+12(2n)2n)1n=limn.π12n.(2n+12n)2.(2n+1)12n=limnπ0.(1)2.eln(1+2n)2n=1.1.1=1

Commented by HongKing last updated on 09/Nov/21

thank you so much my dear Ser perfect

thankyousomuchmydearSerperfect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com