All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 158759 by HongKing last updated on 08/Nov/21
Provethat:limn→∞∑2nk=0(−1)k⋅4n+14n−2k+1(2nk)n=1
Answered by mindispower last updated on 08/Nov/21
∑2nk⩾0(−1)k.4n+14n−2k+1(2nk)=∑2nk=0(−1)k4n+12k+1(2nk)=(4n+1)∑2nk=0∫01.(−x2)k(2nk)dx=(4n+1)∫01(−x2)k(2nk)dx=(4n+1)∫01(1−x2)2ndx=(4n+1)∫01(1−t)2n.t−12dt2=(2n+12)β(2n+1,12)=Γ(2n+1)Γ(12)Γ(2n+1+12)=Γ(2n+1)Γ(12)Γ(2n+12)limn→∞.(Γ(12)Γ(2n+1)Γ(2n+12)12Γ(2n+12)∼2π.(2n)2ne−2nΓ(2n+1)∼2π(2n+1)2n+12e−2n⇔limn→∞(π.(2n+1)2n+12(2n)2n)1n=limn→∞.π12n.(2n+12n)2.(2n+1)12n=limn→∞π0.(1)2.eln(1+2n)2n=1.1.1=1
Commented by HongKing last updated on 09/Nov/21
thankyousomuchmydearSerperfect
Terms of Service
Privacy Policy
Contact: info@tinkutara.com