Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158781 by HongKing last updated on 08/Nov/21

Answered by MJS_new last updated on 09/Nov/21

∫_0 ^π (((1+sin^2  2x)cos 4x)/(1+asin^2  x))dx=2∫_0 ^(π/2) (((1+sin^2  2x)cos 4x)/(1+asin^2  x))       [t=tan x → dx=(dt/(t^2 +1))]  =2∫_0 ^∞ ((t^8 −34t^4 +1)/((t^2 +1)^4 ((a+1)t^2 +1)))dx=       [Ostrogradski′s Method]  =−[((8t(3(a+1)(a−4)t^4 +(7a^2 −24a−24)t^2 −3(5a+4)))/(3a^3 (t^2 +1)^3 ))]_0 ^∞ +  −((8(a+2)(a^2 −4a−4))/a^4 )∫_0 ^∞ (dt/(t^2 +1))+  +((2(a^2 −4a−4)(a^2 +8a+8))/a^4 )∫_0 ^∞ (dt/((a+1)t^2 +1))=  =−[((8t(3(a+1)(a−4)t^4 +(7a^2 −24a−24)t^2 −3(5a+4)))/(3a^3 (t^2 +1)^3 ))]_0 ^∞ −  −[((8(a+2)(a^2 −4a−4))/a^4 )arctan t]_0 ^∞ +  +[((2(a^2 −4a−4)(a^2 +8a+8))/(a^4 (√(a+1))))arctan ((√(a+1))t)]_0 ^∞ =  =(((a^2 −4a−4)(a^2 +8a+8−4(a+2)(√(a+1))))/(a^4 (√(a+1))))π    (π/a)+(((a^2 −4a−4)(a^2 +8a+8−4(a+2)(√(a+1))))/(a^4 (√(a+1))))π=0  ⇒  (3a^3 −8a^2 −48a−32)(√(a+1))=(a^2 −4a−4)(a^2 +8a+8)  squaring & transforming  a^3 (a^5 −a^4 −a^3 −80a^2 −144a−64)=0  a≠0 ⇒ answer is 2  but still the only solution for a is <0  a≈−.938890161126

π0(1+sin22x)cos4x1+asin2xdx=2π/20(1+sin22x)cos4x1+asin2x[t=tanxdx=dtt2+1]=20t834t4+1(t2+1)4((a+1)t2+1)dx=[OstrogradskisMethod]=[8t(3(a+1)(a4)t4+(7a224a24)t23(5a+4))3a3(t2+1)3]0+8(a+2)(a24a4)a40dtt2+1++2(a24a4)(a2+8a+8)a40dt(a+1)t2+1==[8t(3(a+1)(a4)t4+(7a224a24)t23(5a+4))3a3(t2+1)3]0[8(a+2)(a24a4)a4arctant]0++[2(a24a4)(a2+8a+8)a4a+1arctan(a+1t)]0==(a24a4)(a2+8a+84(a+2)a+1)a4a+1ππa+(a24a4)(a2+8a+84(a+2)a+1)a4a+1π=0(3a38a248a32)a+1=(a24a4)(a2+8a+8)squaring&transforminga3(a5a4a380a2144a64)=0a0answeris2butstilltheonlysolutionforais<0a.938890161126

Commented by HongKing last updated on 09/Nov/21

thank you so much my dear Ser,  but its not correct, check from the  6th line..

thankyousomuchmydearSer,butitsnotcorrect,checkfromthe6thline..

Commented by HongKing last updated on 09/Nov/21

my dear Ser, thank you so much for  the awesome solution

mydearSer,thankyousomuchfortheawesomesolution

Commented by MJS_new last updated on 09/Nov/21

corrected it

correctedit

Answered by ajfour last updated on 09/Nov/21

I=∫_0 ^( π/2) (((3−cos 4x)cos 4x)/(1+(a/2)(1−cos 2x)))dx      =−((2π)/a)  I=∫_0 ^( π/2) (((3−cos 4x)cos 4x)/(1+(a/2)(1+cos 2x)))dx  2I=∫_0 ^( π/2) (((2+a)(3−cos 4x)cos 4x)/((1+(a/2))^2 −(a^2 /8)(1+cos 4x)))dx  ((a^2 I)/(8(2+a)))=  ∫_0 ^( π/4)  (((4−s−1)(s+1−1))/(s+1−2((2/a)+1)^2 )) dx =(π/(4((2/a)+1)))  say  s+1=1+cos 4x=w  ∫_0 ^( π/4) (((4−w)(w−1))/(w−2k^2 ))dx=(π/(4k))  =−∫(w+2k^2 )dx+∫ ((4k^2 −4+5w)/(w−2k^2 ))dx  =−(1+2k^2 )(π/4)+((5π)/4)+∫((14k^2 −4)/(2cos^2 2x−2k^2 ))dx  =π−((k^2 π)/2)+((1/k^2 )−(7/2))∫_0 ^( ∞) (dt/(t^2 +1−(1/k^2 )))  =(π/2)(2−k^2 )+(((2−7k^2 )/(2k^2 )))(k/( (√(k^2 −1))))((π/2))      =(π/(4k))  ⇒ 4k−2k^3 +((2−7k^2 )/( (√(k^2 −1))))=1  ⇒   (k^2 −1)(2k^3 −4k+1)^2 =(2−7k^2 )^2   k ≈ 2.33581 or k≈−2.42122  As  1+(2/a)=k  a≈(2/(k−1))   but  a>0  ⇒  k>1  hence   a≈1.49722   −−−−−−−−−−−−−−  but  we have to find Q.  Q^6 =a(a^4 −a^3 −a^2 −80a−144)

I=0π/2(3cos4x)cos4x1+a2(1cos2x)dx=2πaI=0π/2(3cos4x)cos4x1+a2(1+cos2x)dx2I=0π/2(2+a)(3cos4x)cos4x(1+a2)2a28(1+cos4x)dxa2I8(2+a)=0π/4(4s1)(s+11)s+12(2a+1)2dx=π4(2a+1)says+1=1+cos4x=w0π/4(4w)(w1)w2k2dx=π4k=(w+2k2)dx+4k24+5ww2k2dx=(1+2k2)π4+5π4+14k242cos22x2k2dx=πk2π2+(1k272)0dtt2+11k2=π2(2k2)+(27k22k2)kk21(π2)=π4k4k2k3+27k2k21=1(k21)(2k34k+1)2=(27k2)2k2.33581ork2.42122As1+2a=ka2k1buta>0k>1hencea1.49722butwehavetofindQ.Q6=a(a4a3a280a144)

Commented by HongKing last updated on 10/Nov/21

thank you so much my dear Ser

thankyousomuchmydearSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com