Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 158822 by qaz last updated on 09/Nov/21

Σ_(n=0) ^∞ arctan (((−1)^n )/(2n+1))=?

n=0arctan(1)n2n+1=?

Answered by mindispower last updated on 09/Nov/21

Σ_(n≥0) {arctan((1/(4n+1)))−arctan((1/(4n+3)))}  =Σ_(n≥0) ∫_0 ^1 (((4n+1))/((4n+1)^2 +x^2 ))−(((4n+3))/((4n+3)^2 +x^2 ))dx  =(1/2)Σ_(n≥0) ∫_0 ^1 {(dx/(4n+1+ix))+(dx/(4n+1−ix))}−(1/2){∫_0 ^1 (dx/(4n+3+ix))+(dx/(4n+3−ix))}  =(1/8)∫_0 ^1 Σ_(n≥1) ((1/(n+((1+ix)/4)))−(1/n)+(1/(n+((1−ix)/4)))−(1/n))dx  −(1/8)∫_0 ^1 Σ_(n≥1) ((1/(n+((3+ix)/4)))−(1/n)+(1/(n+((3−ix)/4)))−(1/n))dx  +arctan(1)−arctan((1/3))  =(1/8)∫_0 ^1 (H_((1+ix)/4) +H_((1−ix)/4) −H_((3+ix)/4) +H_((3−ix)/4) )+arctan(1)−arctan((1/3))  =∫_0 ^1 ((Ψ(((1+ix)/4))−Ψ(((3−ix)/4))+Ψ(((1−ix)/4))−Ψ(((3+ix)/4)))/8)dx+(π/4)−arctan(3)  =(1/(2i))(log(Γ(((1+i)/4)))−logΓ((1/4))+logΓ(((3−i)/4))−logΓ((3/4))  −logΓ(((1−i)/4))+logΓ((1/4))−logΓ(((3+i)/4))+logΓ((3/4)))+(π/4)−arctan 3  =(1/2)log(((Γ(((1+i)/4))Γ(((3−i)/4)))/(Γ(((1−i)/4))Γ(((3+i)/4)))))+(π/4)−arctan((1/3))  =(1/2)log((π/(sin(((π(1+i))/4)))).((sin(((π(1−i))/4)))/π))+(π/4)−arctan((1/3))  =(1/(2i))log(((1−i)/(1+i)))+(π/4)−arctan((1/3))=(1/(2i))log(−i)+(π/4)−arctan((1/3))  =−arctan((1/3))

n0{arctan(14n+1)arctan(14n+3)}=n001(4n+1)(4n+1)2+x2(4n+3)(4n+3)2+x2dx=12n001{dx4n+1+ix+dx4n+1ix}12{01dx4n+3+ix+dx4n+3ix}=1801n1(1n+1+ix41n+1n+1ix41n)dx1801n1(1n+3+ix41n+1n+3ix41n)dx+arctan(1)arctan(13)=1801(H1+ix4+H1ix4H3+ix4+H3ix4)+arctan(1)arctan(13)=01Ψ(1+ix4)Ψ(3ix4)+Ψ(1ix4)Ψ(3+ix4)8dx+π4arctan(3)=12i(log(Γ(1+i4))logΓ(14)+logΓ(3i4)logΓ(34)logΓ(1i4)+logΓ(14)logΓ(3+i4)+logΓ(34))+π4arctan3=12log(Γ(1+i4)Γ(3i4)Γ(1i4)Γ(3+i4))+π4arctan(13)=12log(πsin(π(1+i)4).sin(π(1i)4)π)+π4arctan(13)=12ilog(1i1+i)+π4arctan(13)=12ilog(i)+π4arctan(13)=arctan(13)

Commented by mindispower last updated on 10/Nov/21

pleasur  there is a mistak in calculus i will tchek it   after sorry

pleasurthereisamistakincalculusiwilltchekitaftersorry

Commented by qaz last updated on 10/Nov/21

thanks a lot.sir

thanksalot.sir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com