All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 158822 by qaz last updated on 09/Nov/21
∑∞n=0arctan(−1)n2n+1=?
Answered by mindispower last updated on 09/Nov/21
∑n⩾0{arctan(14n+1)−arctan(14n+3)}=∑n⩾0∫01(4n+1)(4n+1)2+x2−(4n+3)(4n+3)2+x2dx=12∑n⩾0∫01{dx4n+1+ix+dx4n+1−ix}−12{∫01dx4n+3+ix+dx4n+3−ix}=18∫01∑n⩾1(1n+1+ix4−1n+1n+1−ix4−1n)dx−18∫01∑n⩾1(1n+3+ix4−1n+1n+3−ix4−1n)dx+arctan(1)−arctan(13)=18∫01(H1+ix4+H1−ix4−H3+ix4+H3−ix4)+arctan(1)−arctan(13)=∫01Ψ(1+ix4)−Ψ(3−ix4)+Ψ(1−ix4)−Ψ(3+ix4)8dx+π4−arctan(3)=12i(log(Γ(1+i4))−logΓ(14)+logΓ(3−i4)−logΓ(34)−logΓ(1−i4)+logΓ(14)−logΓ(3+i4)+logΓ(34))+π4−arctan3=12log(Γ(1+i4)Γ(3−i4)Γ(1−i4)Γ(3+i4))+π4−arctan(13)=12log(πsin(π(1+i)4).sin(π(1−i)4)π)+π4−arctan(13)=12ilog(1−i1+i)+π4−arctan(13)=12ilog(−i)+π4−arctan(13)=−arctan(13)
Commented by mindispower last updated on 10/Nov/21
pleasurthereisamistakincalculusiwilltchekitaftersorry
Commented by qaz last updated on 10/Nov/21
thanksalot.sir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com