Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158843 by mnjuly1970 last updated on 09/Nov/21

Commented by mr W last updated on 09/Nov/21

(1)  not true!  example: x=4, y=6  6x+11y=24+66=90 ≡0 mod(30)  but x+7y=4+42=46 ≢0 mod(30)

$$\left(\mathrm{1}\right) \\ $$$${not}\:{true}! \\ $$$${example}:\:{x}=\mathrm{4},\:{y}=\mathrm{6} \\ $$$$\mathrm{6}{x}+\mathrm{11}{y}=\mathrm{24}+\mathrm{66}=\mathrm{90}\:\equiv\mathrm{0}\:{mod}\left(\mathrm{30}\right) \\ $$$${but}\:{x}+\mathrm{7}{y}=\mathrm{4}+\mathrm{42}=\mathrm{46}\:≢\mathrm{0}\:{mod}\left(\mathrm{30}\right) \\ $$

Commented by mnjuly1970 last updated on 09/Nov/21

  yes  you are right... thx mr W

$$\:\:{yes}\:\:{you}\:{are}\:{right}...\:{thx}\:{mr}\:{W} \\ $$

Answered by Rasheed.Sindhi last updated on 09/Nov/21

Q_2  5^9 +64=(5^3 )^3 +(4)^3        =(5^3 +4)( (5^3 )^2 −(5^3 )(4)+(4)^2  )     =(125+4)(15625−500+16)     =129×15141  ∴ 5^9 +64 is composite.

$$\mathrm{Q}_{\mathrm{2}} \:\mathrm{5}^{\mathrm{9}} +\mathrm{64}=\left(\mathrm{5}^{\mathrm{3}} \right)^{\mathrm{3}} +\left(\mathrm{4}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:=\left(\mathrm{5}^{\mathrm{3}} +\mathrm{4}\right)\left(\:\left(\mathrm{5}^{\mathrm{3}} \right)^{\mathrm{2}} −\left(\mathrm{5}^{\mathrm{3}} \right)\left(\mathrm{4}\right)+\left(\mathrm{4}\right)^{\mathrm{2}} \:\right) \\ $$$$\:\:\:=\left(\mathrm{125}+\mathrm{4}\right)\left(\mathrm{15625}−\mathrm{500}+\mathrm{16}\right) \\ $$$$\:\:\:=\mathrm{129}×\mathrm{15141} \\ $$$$\therefore\:\mathrm{5}^{\mathrm{9}} +\mathrm{64}\:{is}\:{composite}. \\ $$

Answered by Rasheed.Sindhi last updated on 09/Nov/21

Q_3   N=n^5 −5n^3 +4n  =(n−2)(n−1)(n)(n+1)(n+2)  (i)•  n modulo 3:   n=3k: Obviously 3 ∣ n⇒3 ∣ N  n=3k+1: n+2=3k+3⇒3 ∣ (n+2)⇒3 ∣ N  n=3k+2: n+1=3k+3⇒3 ∣ (n+1)⇒3 ∣ N  ∴ 3 ∣ N...........................A  (ii)• n modulo 2  n=2k: N=(2k−1)(2k−2)(2k)(2k+1)(2k+2)      =8(4k^3 −5k^2 +k)⇒8 ∣N  n=2k+1:N=(2k)(2k−1)(2k+1)(2k+2)(2k+3)  =32k^5 +80k^4 +40k^3 −20k^2 −12k  =8(4k^5 +10k^4 +5k^3 −((k(5k+3))/2) )  Can be proved that k(5k+3) is   divisible by 2 in both cases:(i)k∈E  or (ii)k∈O  ∴ 8 ∣ N................................B  (iii)• n modulo 5:  n=5k⇒5 ∣ n⇒5 ∣ N  n=5k+1⇒n−1=5k⇒5 ∣ n−1⇒5 ∣ N  n=5k+2⇒n−2=5k⇒5 ∣ n−2⇒5 ∣ N  n=5k+3⇒n+2=5(k+1)⇒5 ∣ n+2⇒5 ∣ N  n=5k+4⇒n+1=5(k+1)⇒5 ∣ n+1⇒n ∣ N  ∴ 5 ∣ N..............................C  A & B & C⇒120 ∣ N

$$\mathrm{Q}_{\mathrm{3}} \:\:{N}={n}^{\mathrm{5}} −\mathrm{5}{n}^{\mathrm{3}} +\mathrm{4}{n} \\ $$$$=\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)\left({n}\right)\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\left(\mathrm{i}\right)\bullet\:\:{n}\:{modulo}\:\mathrm{3}:\: \\ $$$${n}=\mathrm{3}{k}:\:{Obviously}\:\mathrm{3}\:\mid\:{n}\Rightarrow\mathrm{3}\:\mid\:{N} \\ $$$${n}=\mathrm{3}{k}+\mathrm{1}:\:{n}+\mathrm{2}=\mathrm{3}{k}+\mathrm{3}\Rightarrow\mathrm{3}\:\mid\:\left({n}+\mathrm{2}\right)\Rightarrow\mathrm{3}\:\mid\:{N} \\ $$$${n}=\mathrm{3}{k}+\mathrm{2}:\:{n}+\mathrm{1}=\mathrm{3}{k}+\mathrm{3}\Rightarrow\mathrm{3}\:\mid\:\left({n}+\mathrm{1}\right)\Rightarrow\mathrm{3}\:\mid\:{N} \\ $$$$\therefore\:\mathrm{3}\:\mid\:{N}...........................{A} \\ $$$$\left(\mathrm{ii}\right)\bullet\:{n}\:{modulo}\:\mathrm{2} \\ $$$${n}=\mathrm{2}{k}:\:{N}=\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{2}\right)\left(\mathrm{2}{k}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{2}\right) \\ $$$$\:\:\:\:=\mathrm{8}\left(\mathrm{4}{k}^{\mathrm{3}} −\mathrm{5}{k}^{\mathrm{2}} +{k}\right)\Rightarrow\mathrm{8}\:\mid{N} \\ $$$${n}=\mathrm{2}{k}+\mathrm{1}:{N}=\left(\mathrm{2}{k}\right)\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)\left(\mathrm{2}{k}+\mathrm{3}\right) \\ $$$$=\mathrm{32}{k}^{\mathrm{5}} +\mathrm{80}{k}^{\mathrm{4}} +\mathrm{40}{k}^{\mathrm{3}} −\mathrm{20}{k}^{\mathrm{2}} −\mathrm{12}{k} \\ $$$$=\mathrm{8}\left(\mathrm{4}{k}^{\mathrm{5}} +\mathrm{10}{k}^{\mathrm{4}} +\mathrm{5}{k}^{\mathrm{3}} −\frac{{k}\left(\mathrm{5}{k}+\mathrm{3}\right)}{\mathrm{2}}\:\right) \\ $$$${Can}\:{be}\:{proved}\:{that}\:{k}\left(\mathrm{5}{k}+\mathrm{3}\right)\:{is} \\ $$$$\:{divisible}\:{by}\:\mathrm{2}\:{in}\:{both}\:{cases}:\left({i}\right){k}\in\mathbb{E} \\ $$$${or}\:\left({ii}\right){k}\in\mathbb{O} \\ $$$$\therefore\:\mathrm{8}\:\mid\:{N}................................{B} \\ $$$$\left(\mathrm{iii}\right)\bullet\:{n}\:{modulo}\:\mathrm{5}: \\ $$$${n}=\mathrm{5}{k}\Rightarrow\mathrm{5}\:\mid\:{n}\Rightarrow\mathrm{5}\:\mid\:{N} \\ $$$${n}=\mathrm{5}{k}+\mathrm{1}\Rightarrow{n}−\mathrm{1}=\mathrm{5}{k}\Rightarrow\mathrm{5}\:\mid\:{n}−\mathrm{1}\Rightarrow\mathrm{5}\:\mid\:{N} \\ $$$${n}=\mathrm{5}{k}+\mathrm{2}\Rightarrow{n}−\mathrm{2}=\mathrm{5}{k}\Rightarrow\mathrm{5}\:\mid\:{n}−\mathrm{2}\Rightarrow\mathrm{5}\:\mid\:{N} \\ $$$${n}=\mathrm{5}{k}+\mathrm{3}\Rightarrow{n}+\mathrm{2}=\mathrm{5}\left({k}+\mathrm{1}\right)\Rightarrow\mathrm{5}\:\mid\:{n}+\mathrm{2}\Rightarrow\mathrm{5}\:\mid\:{N} \\ $$$${n}=\mathrm{5}{k}+\mathrm{4}\Rightarrow{n}+\mathrm{1}=\mathrm{5}\left({k}+\mathrm{1}\right)\Rightarrow\mathrm{5}\:\mid\:{n}+\mathrm{1}\Rightarrow{n}\:\mid\:{N} \\ $$$$\therefore\:\mathrm{5}\:\mid\:{N}..............................{C} \\ $$$${A}\:\&\:{B}\:\&\:{C}\Rightarrow\mathrm{120}\:\mid\:{N} \\ $$

Commented by mnjuly1970 last updated on 09/Nov/21

thanks alot sir

$${thanks}\:{alot}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com