Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 158874 by ajfour last updated on 09/Nov/21

Commented by ajfour last updated on 09/Nov/21

Length of rope is L, mass m.  The pulley even has mass m  and radius is r. The bead has  mass m. After release at t=0,  find v(x); v being the speed of  bead, while x being  hanging  length of rope.

$${Length}\:{of}\:{rope}\:{is}\:{L},\:{mass}\:{m}. \\ $$$${The}\:{pulley}\:{even}\:{has}\:{mass}\:{m} \\ $$$${and}\:{radius}\:{is}\:{r}.\:{The}\:{bead}\:{has} \\ $$$${mass}\:{m}.\:{After}\:{release}\:{at}\:{t}=\mathrm{0}, \\ $$$${find}\:{v}\left({x}\right);\:{v}\:{being}\:{the}\:{speed}\:{of} \\ $$$${bead},\:{while}\:{x}\:{being}\:\:{hanging} \\ $$$${length}\:{of}\:{rope}. \\ $$

Answered by mr W last updated on 10/Nov/21

at time t:  I=((mr^2 )/2)+(1−(x/L))mr^2 =((mr^2 )/2)(3−((2x)/L))  M=m+(x/L)m=(1+(x/L))m  ω=(v/r)  v=(dx/dt)  T=tension in hanging rope at pulley    ((d(Iω))/dt)=Tr  ((mr)/2)(3−((2x)/L))(dv/dt)−((mr)/2)×(2/L)v^2 =Tr  ((3/2)−(x/L))(dv/dt)−(v^2 /L)=(T/m)   ...(i)    (d/dt)(Mv)=Mg−T  M(dv/dt)+(m/L)v^2 =Mg−T   (1+(x/L))(dv/dt)+(v^2 /L)=(1+(x/L))g−(T/m)   ...(ii)    (i)+(ii):  ((3/2)−(x/L))(dv/dt)−(v^2 /L)+(1+(x/L))(dv/dt)+(v^2 /L)=(1+(x/L))g  (dv/dt)=((2g)/5)(1+(x/L))  v(dv/dx)=((2g)/5)(1+(x/L))  vdv=((2g)/5)(1+(x/L))dx  ∫_0 ^v vdv=((2g)/5)∫_0 ^x (1+(x/L))dx  v^2 =((2g)/5)(2+(x/L))x  ⇒v(x)=(√(((2gL)/5)(2+(x/L))((x/L))))  v_1 =v(L)=(√((6gL)/5))  ==================  (dx/dt)=(√(((2gL)/5)(2+(x/L))((x/L))))  (d/dt)((x/L))=(√(((2g)/(5L))(2+(x/L))((x/L))))  (dξ/dt)=(√(((2g)/(5L))(2+ξ)ξ))  (√((5L)/(2g)))(dξ/( (√((2+ξ)ξ))))=dt  (√((5L)/(2g)))∫_0 ^ξ (dξ/( (√((2+ξ)ξ))))=∫_0 ^t dt  (√((5L)/(2g)))[2ln ((√(2+ξ))+(√ξ))]_0 ^ξ =t  ⇒t(x)=(√((10L)/g))ln (((√(2+(x/L)))+(√(x/L)))/( (√2)))  t_1 =t(L)=(√((10L)/g))ln (((√3)+1)/( (√2)))

$${at}\:{time}\:{t}: \\ $$$${I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}+\left(\mathrm{1}−\frac{{x}}{{L}}\right){mr}^{\mathrm{2}} =\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{3}−\frac{\mathrm{2}{x}}{{L}}\right) \\ $$$${M}={m}+\frac{{x}}{{L}}{m}=\left(\mathrm{1}+\frac{{x}}{{L}}\right){m} \\ $$$$\omega=\frac{{v}}{{r}} \\ $$$${v}=\frac{{dx}}{{dt}} \\ $$$${T}={tension}\:{in}\:{hanging}\:{rope}\:{at}\:{pulley} \\ $$$$ \\ $$$$\frac{{d}\left({I}\omega\right)}{{dt}}={Tr} \\ $$$$\frac{{mr}}{\mathrm{2}}\left(\mathrm{3}−\frac{\mathrm{2}{x}}{{L}}\right)\frac{{dv}}{{dt}}−\frac{{mr}}{\mathrm{2}}×\frac{\mathrm{2}}{{L}}{v}^{\mathrm{2}} ={Tr} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{{x}}{{L}}\right)\frac{{dv}}{{dt}}−\frac{{v}^{\mathrm{2}} }{{L}}=\frac{{T}}{{m}}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\frac{{d}}{{dt}}\left({Mv}\right)={Mg}−{T} \\ $$$${M}\frac{{dv}}{{dt}}+\frac{{m}}{{L}}{v}^{\mathrm{2}} ={Mg}−{T}\: \\ $$$$\left(\mathrm{1}+\frac{{x}}{{L}}\right)\frac{{dv}}{{dt}}+\frac{{v}^{\mathrm{2}} }{{L}}=\left(\mathrm{1}+\frac{{x}}{{L}}\right){g}−\frac{{T}}{{m}}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{{x}}{{L}}\right)\frac{{dv}}{{dt}}−\frac{{v}^{\mathrm{2}} }{{L}}+\left(\mathrm{1}+\frac{{x}}{{L}}\right)\frac{{dv}}{{dt}}+\frac{{v}^{\mathrm{2}} }{{L}}=\left(\mathrm{1}+\frac{{x}}{{L}}\right){g} \\ $$$$\frac{{dv}}{{dt}}=\frac{\mathrm{2}{g}}{\mathrm{5}}\left(\mathrm{1}+\frac{{x}}{{L}}\right) \\ $$$${v}\frac{{dv}}{{dx}}=\frac{\mathrm{2}{g}}{\mathrm{5}}\left(\mathrm{1}+\frac{{x}}{{L}}\right) \\ $$$${vdv}=\frac{\mathrm{2}{g}}{\mathrm{5}}\left(\mathrm{1}+\frac{{x}}{{L}}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{{v}} {vdv}=\frac{\mathrm{2}{g}}{\mathrm{5}}\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}+\frac{{x}}{{L}}\right){dx} \\ $$$${v}^{\mathrm{2}} =\frac{\mathrm{2}{g}}{\mathrm{5}}\left(\mathrm{2}+\frac{{x}}{{L}}\right){x} \\ $$$$\Rightarrow{v}\left({x}\right)=\sqrt{\frac{\mathrm{2}{gL}}{\mathrm{5}}\left(\mathrm{2}+\frac{{x}}{{L}}\right)\left(\frac{{x}}{{L}}\right)} \\ $$$${v}_{\mathrm{1}} ={v}\left({L}\right)=\sqrt{\frac{\mathrm{6}{gL}}{\mathrm{5}}} \\ $$$$================== \\ $$$$\frac{{dx}}{{dt}}=\sqrt{\frac{\mathrm{2}{gL}}{\mathrm{5}}\left(\mathrm{2}+\frac{{x}}{{L}}\right)\left(\frac{{x}}{{L}}\right)} \\ $$$$\frac{{d}}{{dt}}\left(\frac{{x}}{{L}}\right)=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{L}}\left(\mathrm{2}+\frac{{x}}{{L}}\right)\left(\frac{{x}}{{L}}\right)} \\ $$$$\frac{{d}\xi}{{dt}}=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{L}}\left(\mathrm{2}+\xi\right)\xi} \\ $$$$\sqrt{\frac{\mathrm{5}{L}}{\mathrm{2}{g}}}\frac{{d}\xi}{\:\sqrt{\left(\mathrm{2}+\xi\right)\xi}}={dt} \\ $$$$\sqrt{\frac{\mathrm{5}{L}}{\mathrm{2}{g}}}\int_{\mathrm{0}} ^{\xi} \frac{{d}\xi}{\:\sqrt{\left(\mathrm{2}+\xi\right)\xi}}=\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\sqrt{\frac{\mathrm{5}{L}}{\mathrm{2}{g}}}\left[\mathrm{2ln}\:\left(\sqrt{\mathrm{2}+\xi}+\sqrt{\xi}\right)\right]_{\mathrm{0}} ^{\xi} ={t} \\ $$$$\Rightarrow{t}\left({x}\right)=\sqrt{\frac{\mathrm{10}{L}}{{g}}}\mathrm{ln}\:\frac{\sqrt{\mathrm{2}+\frac{{x}}{{L}}}+\sqrt{\frac{{x}}{{L}}}}{\:\sqrt{\mathrm{2}}} \\ $$$${t}_{\mathrm{1}} ={t}\left({L}\right)=\sqrt{\frac{\mathrm{10}{L}}{{g}}}\mathrm{ln}\:\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$

Commented by ajfour last updated on 09/Nov/21

Most beautiful solution i′ve  followed, coz u′ve presented  it utterly nice way; thank u sir.

$${Most}\:{beautiful}\:{solution}\:{i}'{ve} \\ $$$${followed},\:{coz}\:{u}'{ve}\:{presented} \\ $$$${it}\:{utterly}\:{nice}\:{way};\:{thank}\:{u}\:{sir}. \\ $$

Commented by mr W last updated on 10/Nov/21

thank you too, sir!  i was wondering that the size of the  pulley plays no roll.

$${thank}\:{you}\:{too},\:{sir}! \\ $$$${i}\:{was}\:{wondering}\:{that}\:{the}\:{size}\:{of}\:{the} \\ $$$${pulley}\:{plays}\:{no}\:{roll}. \\ $$

Commented by ajfour last updated on 10/Nov/21

yes, remarkable, sir. And its   really great that you even find  the t(x); which i had avoided   asking thinking it just might   get too cumbersome! thanks!

$${yes},\:{remarkable},\:{sir}.\:{And}\:{its}\: \\ $$$${really}\:{great}\:{that}\:{you}\:{even}\:{find} \\ $$$${the}\:{t}\left({x}\right);\:{which}\:{i}\:{had}\:{avoided}\: \\ $$$${asking}\:{thinking}\:{it}\:{just}\:{might} \\ $$$$\:{get}\:{too}\:{cumbersome}!\:{thanks}! \\ $$

Commented by Tawa11 last updated on 10/Nov/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by ajfour last updated on 09/Nov/21

(1/2)(2m)v_0 ^2 +(1/2)(((mr^2 )/2))(v_0 ^2 /r^2 )=mg(((3L)/2))  ⇒  v_0 =(√((6gL)/5))

$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{m}\right){v}_{\mathrm{0}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}\right)\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{r}^{\mathrm{2}} }={mg}\left(\frac{\mathrm{3}{L}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:{v}_{\mathrm{0}} =\sqrt{\frac{\mathrm{6}{gL}}{\mathrm{5}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com