Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15904 by mrW1 last updated on 15/Jun/17

Commented by mrW1 last updated on 15/Jun/17

A convex quadrilateral ABCD is  divided into 4 triangle by its two  diagonals. The centroids of these  triangles form a new quadrilaterial.  Find out the area of the new quadri−  lateral in relation to the area of the  original quadrilateral.

$$\mathrm{A}\:\mathrm{convex}\:\mathrm{quadrilateral}\:\mathrm{ABCD}\:\mathrm{is} \\ $$$$\mathrm{divided}\:\mathrm{into}\:\mathrm{4}\:\mathrm{triangle}\:\mathrm{by}\:\mathrm{its}\:\mathrm{two} \\ $$$$\mathrm{diagonals}.\:\mathrm{The}\:\mathrm{centroids}\:\mathrm{of}\:\mathrm{these} \\ $$$$\mathrm{triangles}\:\mathrm{form}\:\mathrm{a}\:\mathrm{new}\:\mathrm{quadrilaterial}. \\ $$$$\mathrm{Find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{quadri}− \\ $$$$\mathrm{lateral}\:\mathrm{in}\:\mathrm{relation}\:\mathrm{to}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{original}\:\mathrm{quadrilateral}. \\ $$

Answered by ajfour last updated on 15/Jun/17

let AO=a,  BO=b, CO=c, DO=d  and α=∠AOB, ∠BOC=π−α   ∠COD=α , ∠DOA=π−α  Area_(ABCD) =(1/2)[absin α+    bcsin (π−α)+cdsin α+dasin (π−α)]  Area_(ABCD) =(1/2)(sin α)(ab+bc+cd+da)  ⇒Area_(ABCD) = (1/2)(a+c)(b+d)sin α   ΔAOB and ΔCOB have the  same height (with their bases  along AC ) = bsin α  and their  centroids are E and F respectively  with height = (b/3)sin α.  so EF is parallel to AC.   similarly EH , FG // BD.  we can conclude EFGH is a   parallelogram.  let its base be along AC of length    =(1/3)(a+c)  its height ⊥ to AC =(1/3)(b+d)sin α  Area_(EFGH) =(1/9)(a+c)(b+d)sin α               = (2/9)×(1/2)(a+c)(b+d)sin α   Area_(EFGH) =(2/9)(Area_(ABCD) ) .

$${let}\:{AO}={a},\:\:{BO}={b},\:{CO}={c},\:{DO}={d} \\ $$$${and}\:\alpha=\angle{AOB},\:\angle{BOC}=\pi−\alpha \\ $$$$\:\angle{COD}=\alpha\:,\:\angle{DOA}=\pi−\alpha \\ $$$${Area}_{{ABCD}} =\frac{\mathrm{1}}{\mathrm{2}}\left[{ab}\mathrm{sin}\:\alpha+\right. \\ $$$$\left.\:\:{bc}\mathrm{sin}\:\left(\pi−\alpha\right)+{cd}\mathrm{sin}\:\alpha+{da}\mathrm{sin}\:\left(\pi−\alpha\right)\right] \\ $$$${Area}_{{ABCD}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:\alpha\right)\left({ab}+{bc}+{cd}+{da}\right) \\ $$$$\Rightarrow{Area}_{{ABCD}} =\:\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{c}\right)\left({b}+{d}\right)\mathrm{sin}\:\alpha \\ $$$$\:\Delta{AOB}\:{and}\:\Delta{COB}\:{have}\:{the} \\ $$$${same}\:{height}\:\left({with}\:{their}\:{bases}\right. \\ $$$$\left.{along}\:{AC}\:\right)\:=\:{b}\mathrm{sin}\:\alpha\:\:{and}\:{their} \\ $$$${centroids}\:{are}\:{E}\:{and}\:{F}\:{respectively} \\ $$$${with}\:{height}\:=\:\frac{{b}}{\mathrm{3}}\mathrm{sin}\:\alpha. \\ $$$${so}\:{EF}\:{is}\:{parallel}\:{to}\:{AC}. \\ $$$$\:{similarly}\:{EH}\:,\:{FG}\://\:{BD}. \\ $$$${we}\:{can}\:{conclude}\:{EFGH}\:{is}\:{a}\: \\ $$$${parallelogram}. \\ $$$${let}\:{its}\:{base}\:{be}\:{along}\:{AC}\:{of}\:{length} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{3}}\left({a}+{c}\right) \\ $$$${its}\:{height}\:\bot\:{to}\:{AC}\:=\frac{\mathrm{1}}{\mathrm{3}}\left({b}+{d}\right)\mathrm{sin}\:\alpha \\ $$$${Area}_{{EFGH}} =\frac{\mathrm{1}}{\mathrm{9}}\left({a}+{c}\right)\left({b}+{d}\right)\mathrm{sin}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}}{\mathrm{9}}×\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{c}\right)\left({b}+{d}\right)\mathrm{sin}\:\alpha \\ $$$$\:\boldsymbol{{Area}}_{\boldsymbol{{EFGH}}} =\frac{\mathrm{2}}{\mathrm{9}}\left(\boldsymbol{{Area}}_{\boldsymbol{{ABCD}}} \right)\:. \\ $$

Commented by mrW1 last updated on 15/Jun/17

very correct, thanks!

$$\mathrm{very}\:\mathrm{correct},\:\mathrm{thanks}! \\ $$

Commented by ajfour last updated on 15/Jun/17

thanks Sir, God bless you.

$${thanks}\:{Sir},\:{God}\:{bless}\:{you}. \\ $$

Answered by mrW1 last updated on 15/Jun/17

An other way to solve:  ∵ OE=(2/3)OP  ∴ A_(ΔOEA) =(2/3)A_(ΔOPA)   ∵ OT=(1/3)OA  ∴ A_(ΔOET) =(1/3)A_(ΔOEA) =(1/3)×(2/3)A_(ΔOPA) =(2/9)A_(ΔOPA)   similarly  A_(ΔOES) =(2/9)A_(ΔOPB)   ......  A_(EFGH) =A_(ΔOET) +A_(ΔOES) +.......  =(2/9)A_(ΔOPA) +(2/9)A_(ΔOPB) +......  =(2/9)A_(ABCD)

$$\mathrm{An}\:\mathrm{other}\:\mathrm{way}\:\mathrm{to}\:\mathrm{solve}: \\ $$$$\because\:\mathrm{OE}=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{OP} \\ $$$$\therefore\:\mathrm{A}_{\Delta\mathrm{OEA}} =\frac{\mathrm{2}}{\mathrm{3}}\mathrm{A}_{\Delta\mathrm{OPA}} \\ $$$$\because\:\mathrm{OT}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{OA} \\ $$$$\therefore\:\mathrm{A}_{\Delta\mathrm{OET}} =\frac{\mathrm{1}}{\mathrm{3}}\mathrm{A}_{\Delta\mathrm{OEA}} =\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{3}}\mathrm{A}_{\Delta\mathrm{OPA}} =\frac{\mathrm{2}}{\mathrm{9}}\mathrm{A}_{\Delta\mathrm{OPA}} \\ $$$$\mathrm{similarly} \\ $$$$\mathrm{A}_{\Delta\mathrm{OES}} =\frac{\mathrm{2}}{\mathrm{9}}\mathrm{A}_{\Delta\mathrm{OPB}} \\ $$$$...... \\ $$$$\mathrm{A}_{\mathrm{EFGH}} =\mathrm{A}_{\Delta\mathrm{OET}} +\mathrm{A}_{\Delta\mathrm{OES}} +....... \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}\mathrm{A}_{\Delta\mathrm{OPA}} +\frac{\mathrm{2}}{\mathrm{9}}\mathrm{A}_{\Delta\mathrm{OPB}} +...... \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}\mathrm{A}_{\mathrm{ABCD}} \\ $$

Commented by mrW1 last updated on 15/Jun/17

Commented by ajfour last updated on 15/Jun/17

brilliant technique, Sir.    thank you sir .

$${brilliant}\:{technique},\:{Sir}. \\ $$$$\:\:{thank}\:{you}\:{sir}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com