Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 159057 by HongKing last updated on 12/Nov/21

Solve for positive integers:  a^3  + 9b^2  + 9c^2  = 2017  where  a ≥ b ≥ c

Solveforpositiveintegers:a3+9b2+9c2=2017whereabc

Commented by Rasheed.Sindhi last updated on 12/Nov/21

(a,b,c)=(10,8,7)

(a,b,c)=(10,8,7)

Answered by Rasheed.Sindhi last updated on 12/Nov/21

a^3  + 9b^2  + 9c^2  = 2017  where  a ≥ b ≥ c ∧ a,b,c∈Z^+   b^2 +c^2 =((2017−a^3 )/9)  ⇒9∣(2017−a^3 )  a≤⌊ ((2017))^(1/3)  ⌋=12  a=12: 9∤(2017−12^3 ) (rejected)  We can observe that only   9∣2017−10^3   9∣2017−7^3   9∣2017−4^3   9∣2017−1^3   So possible values for a are:  10,7,4,1   a=10  b^2 +c^2 =((2017−a^3 )/9)=((2017−10^3 )/9)=113  Note that b & c can have values upto  a  Here b,c≤10,we can easily find     113=8^2 +7^2   a=7  b^2 +c^2 =((2017−7^3 )/9)=186  maximum value for b & c is 7  and   max(b^2 +c^2 )=7^2 +7^2 =98  b^2 +c^2 ≠186  Similar logic shows that for a=4,1  there are no values for b,c under  the above conditions.  ∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧                                                                 _(⌢) ^(⌢^ )              1st Filter:  determinant (((a≤⌊((2017))^(1/3)  ⌋=12)))   2nd Filter:  determinant (((9∣(2017−a^3 ))))   3rd Filter:    determinant (((b,c≤a  ∧  b^2 +c^2 =(2017−a^3 )/9)))

a3+9b2+9c2=2017whereabca,b,cZ+b2+c2=2017a399(2017a3)a20173=12a=12:9(2017123)(rejected)Wecanobservethatonly92017103920177392017439201713Sopossiblevaluesforaare:10,7,4,1a=10b2+c2=2017a39=20171039=113Notethatb&ccanhavevaluesuptoaHereb,c10,wecaneasilyfind113=82+72a=7b2+c2=2017739=186maximumvalueforb&cis7andmax(b2+c2)=72+72=98b2+c2186Similarlogicshowsthatfora=4,1therearenovaluesforb,cundertheaboveconditions.1stFilter:a20173=122ndFilter:9(2017a3)3rdFilter:b,cab2+c2=(2017a3)/9

Commented by HongKing last updated on 14/Nov/21

very nice dear Ser thank you

verynicedearSerthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com