Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 159085 by ajfour last updated on 12/Nov/21

Answered by mr W last updated on 15/Nov/21

Commented by mr W last updated on 15/Nov/21

2Rsin θ=R+Rsin ϕ  sin ϕ=2 sin θ−1  (dϕ/dθ)=((2 cos θ)/(cos ϕ))=((cos θ)/( (√(sin θ(1−sin θ)))))  x_A =x_E =4R sin θ  x_B =x_A +2R cos θ+R cos ϕ  x_B =4R sin θ+2R cos θ+R cos ϕ  ω=(dθ/dt)  v_B =(dx_B /dt)=4Rcos θ ω−2R sin θ ω−R sin ϕ ω (dϕ/dθ)  v_B =2R(2cos θ−sin θ−cos θ tan ϕ)ω  (dv_B /dθ)=2R(2cos θ−sin θ−cos θ tan ϕ)(dω/dθ)  +2Rω(−2sin θ−cos θ+sin θ tan ϕ−((2cos^2  θ)/(cos^3  ϕ)))  a_B =(dv_B /dt)=ω(dv_B /dθ)  =2Rω(2cos θ−sin θ−cos θ tan ϕ)(dω/dθ)  +2Rω^2 (−2sin θ−cos θ+sin θ tan ϕ−((2cos^2  θ)/(cos^3  ϕ)))  Ncos ϕ=ma_B   N=0 ⇒a_B =0  (2cos θ−sin θ−cos θ tan ϕ)(dω/dθ)  −ω(2sin θ+cos θ−sin θ tan ϕ+((2cos^2  θ)/(cos^3  ϕ)))=0   ..(I)    x_G −x_A =(−2sin θ+cos θ)R  y_G =2R cos θ+R sin θ  y_E =4R cos θ  I_E =I+m(x_E −x_G )^2 +m(y_E −y_G )^2   =((m(4R^2 +16R^2 ))/(12))+m(−2 sin θ+cos θ)^2 R^2 +m(−2 cos θ+sin θ)^2 R^2   =(((20−12 sin 2θ)mR^2 )/3)  ((I_E ω^2 )/2)+((mv_B ^2 )/2)=mg((√5)R−y_G )  ((I_E ω^2 )/2)+((mv_B ^2 )/2)=mgR((√5)−2 cos θ−sin θ)  (((20−12 sin 2θ)mω^2 R^2 )/6)+((4mR^2 (2cos θ−sin θ−cos θ tan ϕ)^2 ω^2 )/2)=mgR((√5)−2 cos θ−sin θ)  [10−6 sin 2θ+6(2cos θ−sin θ−cos θ tan ϕ)^2 ]ω^2 =((3g)/R)((√5)−2 cos θ−sin θ)  ω^2 =((3g)/R)×(((√5)−2 cos θ−sin θ)/(10−6 sin 2θ+6(2cos θ−sin θ−cos θ tan ϕ)^2 ))  ω=(√((3g)/R))×f(θ)  with f(θ)=(√(((√5)−2 cos θ−sin θ)/(10−6 sin 2θ+6(2cos θ−sin θ−cos θ tan ϕ)^2 )))    we get from (I)  θ≈0.7296≈41.8° at which N=0    all above is valid for tan^(−1) (1/2)≤θ≤θ_(max)   ϕ+θ_(max) =90°  sin (90°−θ_(max) )=2 sin θ_(max) −1  2 sin θ_(max) −cos θ_(max) =1  sin (θ_(max) −tan^(−1) (1/2))=(1/( (√5)))  θ_(max) =sin^(−1) (1/( (√5)))+tan^(−1) (1/2)≈53.1°  N=0 occours at θ≈41.8°, before  θ_(max)  is reached.

2Rsinθ=R+Rsinφsinφ=2sinθ1dφdθ=2cosθcosφ=cosθsinθ(1sinθ)xA=xE=4RsinθxB=xA+2Rcosθ+RcosφxB=4Rsinθ+2Rcosθ+Rcosφω=dθdtvB=dxBdt=4Rcosθω2RsinθωRsinφωdφdθvB=2R(2cosθsinθcosθtanφ)ωdvBdθ=2R(2cosθsinθcosθtanφ)dωdθ+2Rω(2sinθcosθ+sinθtanφ2cos2θcos3φ)aB=dvBdt=ωdvBdθ=2Rω(2cosθsinθcosθtanφ)dωdθ+2Rω2(2sinθcosθ+sinθtanφ2cos2θcos3φ)Ncosφ=maBN=0aB=0(2cosθsinθcosθtanφ)dωdθω(2sinθ+cosθsinθtanφ+2cos2θcos3φ)=0..(I)xGxA=(2sinθ+cosθ)RyG=2Rcosθ+RsinθyE=4RcosθIE=I+m(xExG)2+m(yEyG)2=m(4R2+16R2)12+m(2sinθ+cosθ)2R2+m(2cosθ+sinθ)2R2=(2012sin2θ)mR23IEω22+mvB22=mg(5RyG)IEω22+mvB22=mgR(52cosθsinθ)(2012sin2θ)mω2R26+4mR2(2cosθsinθcosθtanφ)2ω22=mgR(52cosθsinθ)[106sin2θ+6(2cosθsinθcosθtanφ)2]ω2=3gR(52cosθsinθ)ω2=3gR×52cosθsinθ106sin2θ+6(2cosθsinθcosθtanφ)2ω=3gR×f(θ)withf(θ)=52cosθsinθ106sin2θ+6(2cosθsinθcosθtanφ)2wegetfrom(I)θ0.729641.8°atwhichN=0allaboveisvalidfortan112θθmaxφ+θmax=90°sin(90°θmax)=2sinθmax12sinθmaxcosθmax=1sin(θmaxtan112)=15θmax=sin115+tan11253.1°N=0occoursatθ41.8°,beforeθmaxisreached.

Commented by mr W last updated on 14/Nov/21

Commented by mr W last updated on 18/Nov/21

i have taken following start position:  θ_0 =tan^(−1) (1/2)

ihavetakenfollowingstartposition:θ0=tan112

Commented by mr W last updated on 14/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com