Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15917 by mrW1 last updated on 15/Jun/17

Commented by mrW1 last updated on 15/Jun/17

E,F,G,H are mid−points of the sides  of a convex quadrilateral ABCD.  L,K are mid−points of the diagonals.  Prove that EG,FH,LK intersect at the  same point J  and J is the mid−point of  them.

$$\mathrm{E},\mathrm{F},\mathrm{G},\mathrm{H}\:\mathrm{are}\:\mathrm{mid}−\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}\:\mathrm{ABCD}. \\ $$$$\mathrm{L},\mathrm{K}\:\mathrm{are}\:\mathrm{mid}−\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{EG},\mathrm{FH},\mathrm{LK}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{point}\:\mathrm{J}\:\:\mathrm{and}\:\mathrm{J}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mid}−\mathrm{point}\:\mathrm{of}\:\:\mathrm{them}. \\ $$

Answered by mrW1 last updated on 16/Jun/17

An other way to solve:  FK=(1/2)CD  LH=(1/2)CD  ⇒FK=LH and FK∥LH    FL=(1/2)AB  HK=(1/2)AB  ⇒FL=HK and FL∥HK    ⇒HLFK is parallelogram  ⇒LJ=JK and FJ=JH    similarly  EL=(1/2)AD  KG=(1/2)AD  ⇒EL=KG and EL∥KG    EK=(1/2)BC  LG=(1/2)BC  ⇒EK=LG and EK∥LG    ⇒ELGK is parallelogram  ⇒LJ=JK and EJ=JG    ⇒J is mid−point of LK,FH and EG.

$$\mathrm{An}\:\mathrm{other}\:\mathrm{way}\:\mathrm{to}\:\mathrm{solve}: \\ $$$$\mathrm{FK}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{CD} \\ $$$$\mathrm{LH}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{CD} \\ $$$$\Rightarrow\mathrm{FK}=\mathrm{LH}\:\mathrm{and}\:\mathrm{FK}\parallel\mathrm{LH} \\ $$$$ \\ $$$$\mathrm{FL}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB} \\ $$$$\mathrm{HK}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB} \\ $$$$\Rightarrow\mathrm{FL}=\mathrm{HK}\:\mathrm{and}\:\mathrm{FL}\parallel\mathrm{HK} \\ $$$$ \\ $$$$\Rightarrow\mathrm{HLFK}\:\mathrm{is}\:\mathrm{parallelogram} \\ $$$$\Rightarrow\mathrm{LJ}=\mathrm{JK}\:\mathrm{and}\:\mathrm{FJ}=\mathrm{JH} \\ $$$$ \\ $$$$\mathrm{similarly} \\ $$$$\mathrm{EL}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AD} \\ $$$$\mathrm{KG}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AD} \\ $$$$\Rightarrow\mathrm{EL}=\mathrm{KG}\:\mathrm{and}\:\mathrm{EL}\parallel\mathrm{KG} \\ $$$$ \\ $$$$\mathrm{EK}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{BC} \\ $$$$\mathrm{LG}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{BC} \\ $$$$\Rightarrow\mathrm{EK}=\mathrm{LG}\:\mathrm{and}\:\mathrm{EK}\parallel\mathrm{LG} \\ $$$$ \\ $$$$\Rightarrow\mathrm{ELGK}\:\mathrm{is}\:\mathrm{parallelogram} \\ $$$$\Rightarrow\mathrm{LJ}=\mathrm{JK}\:\mathrm{and}\:\mathrm{EJ}=\mathrm{JG} \\ $$$$ \\ $$$$\Rightarrow\mathrm{J}\:\mathrm{is}\:\mathrm{mid}−\mathrm{point}\:\mathrm{of}\:\mathrm{LK},\mathrm{FH}\:\mathrm{and}\:\mathrm{EG}. \\ $$

Commented by mrW1 last updated on 16/Jun/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com