All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 159226 by cortano last updated on 14/Nov/21
Ω=∫0∞x56−x(1+x2)lnxdx=?
Answered by mindispower last updated on 14/Nov/21
∫0∞xs−x12(1+x2)ln(x).dx=f(s)f′(s)=∫0∞xs1+x2dx=∫0∞ys−122(1+y)dy=β(1−s2,s+12)2=π2sin(π(1−s)2)=π2cos(sπ2)f(s)=∫12sπ2cos(sπ2)ds=∫π4sπ2ducos(u)=∫π4sπ2cos(u)du(1−sin(u))(1+sin(u))=[12.ln(1+sin(u)1−sin(u)]π4sπ2]=ln(1+sin(sπ2)1−sin(sπ2))2−ln(2+12−1)2Ω=f(56)=ln(1+sin(5π12)1−sin(5π12))−ln(1+22−1)2sin(5π12)=cos(π12)=2+32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com