Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 159226 by cortano last updated on 14/Nov/21

 Ω = ∫_0 ^∞ (((x^5 )^(1/6) −(√x))/((1+x^2 ) ln x)) dx =?

Ω=0x56x(1+x2)lnxdx=?

Answered by mindispower last updated on 14/Nov/21

∫_0 ^∞ ((x^s −x^(1/2) )/((1+x^2 )ln(x))).dx=f(s)  f′(s)=∫_0 ^∞ (x^s /(1+x^2 ))dx=∫_0 ^∞ (y^((s−1)/2) /(2(1+y)))dy=((β(((1−s)/2),((s+1)/2)))/2)  =(π/(2sin(((π(1−s))/2))))=(π/(2cos(((sπ)/2))))  f(s)=∫_(1/2)  ^s (π/(2cos(((sπ)/2))))ds  =∫_(π/4) ^((sπ)/2) (du/(cos(u)))=∫_(π/4) ^((sπ)/2) ((cos(u)du)/((1−sin(u))(1+sin(u))))  =[(1/2).ln(((1+sin(u))/(1−sin(u)))]_(π/4) ^((sπ)/2) ]=((ln(((1+sin(((sπ)/2)))/(1−sin(((sπ)/2))))))/2)  −((ln((((√2)+1)/( (√2)−1))))/2)  Ω=f((5/6))=((ln(((1+sin(((5π)/(12))))/(1−sin(((5π)/(12))))))−ln(((1+(√2))/( (√2)−1))))/2)  sin(((5π)/(12)))=cos((π/(12)))=((√(2+(√3)))/2)

0xsx12(1+x2)ln(x).dx=f(s)f(s)=0xs1+x2dx=0ys122(1+y)dy=β(1s2,s+12)2=π2sin(π(1s)2)=π2cos(sπ2)f(s)=12sπ2cos(sπ2)ds=π4sπ2ducos(u)=π4sπ2cos(u)du(1sin(u))(1+sin(u))=[12.ln(1+sin(u)1sin(u)]π4sπ2]=ln(1+sin(sπ2)1sin(sπ2))2ln(2+121)2Ω=f(56)=ln(1+sin(5π12)1sin(5π12))ln(1+221)2sin(5π12)=cos(π12)=2+32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com