All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 159229 by tounghoungko last updated on 14/Nov/21
limx→∞x(x2+2x+x−2x2+x)=?
Answered by FongXD last updated on 14/Nov/21
L=limxx→+∞(x2+2x−x+2x−2x2+x)L=limxx→+∞[(x2+2x)−x2x2+2x+x+4x2−4(x2+x)2x+2x2+x]L=limxx→+∞(2xx2+2x+x−2xx+x2+x)L=lim2xx→+∞2[(x+x2+x)−(x2+2x+x)(x2+2x+x)(x+x2+x)]L=lim2xx→+∞2[(x2+x)−(x2+2x)(x2+2x+x)(x+x2+x)(x2+x+x2+2x)]L=limx→+∞−2x3x3(1+2x−1+1)(1+1+x−1)(1+x−1+1+2x−1)L=−2(1+0+1)(1+1+0)(1+0+1+0)=−14
Answered by qaz last updated on 15/Nov/21
limxx→∞(x2+2x+x−2x2+x)=limx→01x2(1+2x+1−21+x)=limx→01x2((1+2x+1)2−4+4x)=limx→0,ξ→41x2⋅12ξ((1+2x+1)2−(4+4x))=12limx→01+2x−x−1x2=12limx→0,ζ→11x2⋅12ζ(1+2x−(x+1)2)=−14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com