Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 159229 by tounghoungko last updated on 14/Nov/21

   lim_(x→∞)  x((√(x^2 +2x))+x−2(√(x^2 +x)) )=?

limxx(x2+2x+x2x2+x)=?

Answered by FongXD last updated on 14/Nov/21

L=lim_(x→+∞) x((√(x^2 +2x))−x+2x−2(√(x^2 +x)))  L=lim_(x→+∞) x[(((x^2 +2x)−x^2 )/( (√(x^2 +2x))+x))+((4x^2 −4(x^2 +x))/(2x+2(√(x^2 +x))))]  L=lim_(x→+∞) x(((2x)/( (√(x^2 +2x))+x))−((2x)/(x+(√(x^2 +x)))))  L=lim_(x→+∞) 2x^2 [(((x+(√(x^2 +x)))−((√(x^2 +2x))+x))/(((√(x^2 +2x))+x)(x+(√(x^2 +x)))))]  L=lim_(x→+∞) 2x^2 [(((x^2 +x)−(x^2 +2x))/(((√(x^2 +2x))+x)(x+(√(x^2 +x)))((√(x^2 +x))+(√(x^2 +2x)))))]  L=lim_(x→+∞) ((−2x^3 )/(x^3 ((√(1+2x^(−1) ))+1)(1+(√(1+x^(−1) )))((√(1+x^(−1) ))+(√(1+2x^(−1) )))))  L=((−2)/( ((√(1+0))+1)(1+(√(1+0)))((√(1+0))+(√(1+0)))))=−(1/4)

L=limxx+(x2+2xx+2x2x2+x)L=limxx+[(x2+2x)x2x2+2x+x+4x24(x2+x)2x+2x2+x]L=limxx+(2xx2+2x+x2xx+x2+x)L=lim2xx+2[(x+x2+x)(x2+2x+x)(x2+2x+x)(x+x2+x)]L=lim2xx+2[(x2+x)(x2+2x)(x2+2x+x)(x+x2+x)(x2+x+x2+2x)]L=limx+2x3x3(1+2x1+1)(1+1+x1)(1+x1+1+2x1)L=2(1+0+1)(1+1+0)(1+0+1+0)=14

Answered by qaz last updated on 15/Nov/21

lim_(x→∞) x((√(x^2 +2x))+x−2(√(x^2 +x)))  =lim_(x→0) (1/x^2 )((√(1+2x))+1−2(√(1+x)))  =lim_(x→0) (1/x^2 )((√(((√(1+2x))+1)^2 ))−(√(4+4x)))  =lim_(x→0,ξ→4) (1/x^2 )∙(1/( 2(√ξ)))(((√(1+2x))+1)^2 −(4+4x))  =(1/( 2))lim_(x→0) (((√(1+2x))−x−1)/x^2 )  =(1/( 2))lim_(x→0,ζ→1) (1/x^2 )∙(1/(2(√ζ)))(1+2x−(x+1)^2 )  =−(1/4)

limxx(x2+2x+x2x2+x)=limx01x2(1+2x+121+x)=limx01x2((1+2x+1)24+4x)=limx0,ξ41x212ξ((1+2x+1)2(4+4x))=12limx01+2xx1x2=12limx0,ζ11x212ζ(1+2x(x+1)2)=14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com