Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 15927 by ajfour last updated on 15/Jun/17

Commented by ajfour last updated on 15/Jun/17

Q.15917 (sorry it got uploaded  as new question)  mid points of the sides of   quadrilateral ABCD are   E, F, G, and H. Midpoints of  its digonals L and K.    To prove : intersection point J  of EG and HF   lies on LK and  is their (EG, HF, LK) midpoint.

$${Q}.\mathrm{15917}\:\left({sorry}\:{it}\:{got}\:{uploaded}\right. \\ $$$$\left.{as}\:{new}\:{question}\right) \\ $$$${mid}\:{points}\:{of}\:{the}\:{sides}\:{of}\: \\ $$$${quadrilateral}\:{ABCD}\:{are}\: \\ $$$${E},\:{F},\:{G},\:{and}\:{H}.\:{Midpoints}\:{of} \\ $$$${its}\:{digonals}\:{L}\:{and}\:{K}. \\ $$$$\:\:{To}\:{prove}\::\:{intersection}\:{point}\:{J} \\ $$$${of}\:{EG}\:{and}\:{HF}\:\:\:{lies}\:{on}\:{LK}\:{and} \\ $$$${is}\:{their}\:\left({EG},\:{HF},\:{LK}\right)\:{midpoint}. \\ $$

Commented by ajfour last updated on 15/Jun/17

 z_1 +z_2 =z_3 +z_4    .....(i)  let B is the origin    z_L =((z_1 +z_2 )/2)  ,   z_K =z_1 +((z_3 −z_1 )/2) =((z_1 +z_3 )/2)   z_H =(z_1 /2)  ,  z_F =z_3 +(z_4 /2)    A point of HF :    z_(HF)  = z_H +μ(z_F −z_H )          = (z_1 /2)+μ(z_3 +((z_4 −z_1 )/2))          = (z_1 /2)+μ(z_3 +((z_2 −z_3 )/2))    [see (i)]       z_(HF)  = (z_1 /2)+μ(((z_2 +z_3 )/2))    ...(ii)    z_E = (z_3 /2)  ,  z_G  = z_1 +(z_2 /2)   A point on EG obeys :   z_(EG) = z_E +ε(z_G −z_E )          = (z_3 /2)+ε(z_1 +((z_2 −z_3 )/2))    ...(iii)  point of intersection J of HF and  EG shall obey both their eqns.    (ii) and (iii)  z_J =(z_1 /2)+μ(((z_2 +z_3 )/2))=(z_3 /2)+ε(z_1 +((z_2 −z_3 )/2))  ⇒  z_1 ((1/2)−ε)+z_2 ((μ/2)−(ε/2))+                                z_3 ((μ/2)−(1/2)+(ε/2)) =0    as z_1 , z_2 , z_3  can be independently   chosen to form a quadrilateral   but above eqn. is always true, so  for point J,     ε=(1/2) , μ=ε=(1/2)  this implies J is the midpoint  of HF and EG , and that   z_J =(z_1 /2)+((z_2 +z_3 )/4)       (by substituting μ=(1/2) in (ii))  It now remains to prove that  J is also the midpoint of LK.   midpoint of LK is       z=((z_L +z_K )/2)      z= (1/2)(((z_1 +z_2 )/2)+((z_1 +z_3 )/2))        = (z_1 /2)+((z_2 +z_3 )/4)   = z_(J )   so midpoints of EG, HF, and   LK coincide in J .

$$\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} ={z}_{\mathrm{3}} +{z}_{\mathrm{4}} \:\:\:.....\left({i}\right) \\ $$$${let}\:{B}\:{is}\:{the}\:{origin}\: \\ $$$$\:{z}_{{L}} =\frac{{z}_{\mathrm{1}} +{z}_{\mathrm{2}} }{\mathrm{2}}\:\:, \\ $$$$\:{z}_{{K}} ={z}_{\mathrm{1}} +\frac{{z}_{\mathrm{3}} −{z}_{\mathrm{1}} }{\mathrm{2}}\:=\frac{{z}_{\mathrm{1}} +{z}_{\mathrm{3}} }{\mathrm{2}} \\ $$$$\:{z}_{{H}} =\frac{{z}_{\mathrm{1}} }{\mathrm{2}}\:\:,\:\:{z}_{{F}} ={z}_{\mathrm{3}} +\frac{{z}_{\mathrm{4}} }{\mathrm{2}}\: \\ $$$$\:{A}\:{point}\:{of}\:{HF}\:: \\ $$$$\:\:{z}_{{HF}} \:=\:{z}_{{H}} +\mu\left({z}_{{F}} −{z}_{{H}} \right) \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\mu\left({z}_{\mathrm{3}} +\frac{{z}_{\mathrm{4}} −{z}_{\mathrm{1}} }{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\mu\left({z}_{\mathrm{3}} +\frac{{z}_{\mathrm{2}} −{z}_{\mathrm{3}} }{\mathrm{2}}\right)\:\:\:\:\left[{see}\:\left({i}\right)\right] \\ $$$$\:\:\:\:\:{z}_{{HF}} \:=\:\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\mu\left(\frac{{z}_{\mathrm{2}} +{z}_{\mathrm{3}} }{\mathrm{2}}\right)\:\:\:\:...\left({ii}\right) \\ $$$$\:\:{z}_{{E}} =\:\frac{{z}_{\mathrm{3}} }{\mathrm{2}}\:\:,\:\:{z}_{{G}} \:=\:{z}_{\mathrm{1}} +\frac{{z}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:{A}\:{point}\:{on}\:{EG}\:{obeys}\:: \\ $$$$\:{z}_{{EG}} =\:{z}_{{E}} +\epsilon\left({z}_{{G}} −{z}_{{E}} \right) \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{{z}_{\mathrm{3}} }{\mathrm{2}}+\epsilon\left({z}_{\mathrm{1}} +\frac{{z}_{\mathrm{2}} −{z}_{\mathrm{3}} }{\mathrm{2}}\right)\:\:\:\:...\left({iii}\right) \\ $$$${point}\:{of}\:{intersection}\:{J}\:{of}\:{HF}\:{and} \\ $$$${EG}\:{shall}\:{obey}\:{both}\:{their}\:{eqns}. \\ $$$$\:\:\left({ii}\right)\:{and}\:\left({iii}\right) \\ $$$${z}_{{J}} =\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\mu\left(\frac{{z}_{\mathrm{2}} +{z}_{\mathrm{3}} }{\mathrm{2}}\right)=\frac{{z}_{\mathrm{3}} }{\mathrm{2}}+\epsilon\left({z}_{\mathrm{1}} +\frac{{z}_{\mathrm{2}} −{z}_{\mathrm{3}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:{z}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}−\epsilon\right)+{z}_{\mathrm{2}} \left(\frac{\mu}{\mathrm{2}}−\frac{\epsilon}{\mathrm{2}}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{z}_{\mathrm{3}} \left(\frac{\mu}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\epsilon}{\mathrm{2}}\right)\:=\mathrm{0} \\ $$$$\:\:{as}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:{can}\:{be}\:{independently} \\ $$$$\:{chosen}\:{to}\:{form}\:{a}\:{quadrilateral} \\ $$$$\:{but}\:{above}\:{eqn}.\:{is}\:{always}\:{true},\:{so} \\ $$$${for}\:{point}\:{J}, \\ $$$$\:\:\:\epsilon=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\mu=\epsilon=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${this}\:{implies}\:{J}\:{is}\:{the}\:{midpoint} \\ $$$${of}\:{HF}\:{and}\:{EG}\:,\:{and}\:{that} \\ $$$$\:{z}_{{J}} =\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\frac{{z}_{\mathrm{2}} +{z}_{\mathrm{3}} }{\mathrm{4}}\:\:\: \\ $$$$\:\:\left({by}\:{substituting}\:\mu=\frac{\mathrm{1}}{\mathrm{2}}\:{in}\:\left({ii}\right)\right) \\ $$$${It}\:{now}\:{remains}\:{to}\:{prove}\:{that} \\ $$$${J}\:{is}\:{also}\:{the}\:{midpoint}\:{of}\:{LK}. \\ $$$$\:{midpoint}\:{of}\:{LK}\:{is} \\ $$$$\:\:\:\:\:{z}=\frac{{z}_{{L}} +{z}_{{K}} }{\mathrm{2}} \\ $$$$\:\:\:\:{z}=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{z}_{\mathrm{1}} +{z}_{\mathrm{2}} }{\mathrm{2}}+\frac{{z}_{\mathrm{1}} +{z}_{\mathrm{3}} }{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:=\:\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+\frac{{z}_{\mathrm{2}} +{z}_{\mathrm{3}} }{\mathrm{4}}\:\:\:=\:{z}_{{J}\:} \\ $$$${so}\:{midpoints}\:{of}\:{EG},\:{HF},\:{and} \\ $$$$\:{LK}\:{coincide}\:{in}\:{J}\:. \\ $$

Commented by mrW1 last updated on 15/Jun/17

excellent sir! you master the vector  technique outstandingly.

$$\mathrm{excellent}\:\mathrm{sir}!\:\mathrm{you}\:\mathrm{master}\:\mathrm{the}\:\mathrm{vector} \\ $$$$\mathrm{technique}\:\mathrm{outstandingly}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/Jun/17

let:A(a),B(b),C(c),D(d),L(l),K(k)  H(h)=((b+c)/2),F(f)=((a+d)/2),E(e)=((a+b)/2),  G(g)=((d+c)/2)  ⇒L(l)=((b+d)/2),K(k)=((a+c)/2)  J=((((b+d)/2)+((a+c)/2))/2)=((a+b+c+d)/4)  (i)  midpoint of FH=((((a+d)/2)+((b+c)/2))/2)=((a+d+b+c)/4) (ii)    midpoint of EG=((((a+b)/2)+((d+c)/2))/2)=((a+b+d+c)/4) (iii)  a,b,c,d,e,f,g,,k,l,are complex numbers.  from equations i,ii,iii,we see that:  midpoint of:EG,FH,LK,have the same  cordinates.so they should be the same  point. ■

$${let}:{A}\left({a}\right),{B}\left({b}\right),{C}\left({c}\right),{D}\left({d}\right),{L}\left({l}\right),{K}\left({k}\right) \\ $$$${H}\left({h}\right)=\frac{{b}+{c}}{\mathrm{2}},{F}\left({f}\right)=\frac{{a}+{d}}{\mathrm{2}},{E}\left({e}\right)=\frac{{a}+{b}}{\mathrm{2}}, \\ $$$${G}\left({g}\right)=\frac{{d}+{c}}{\mathrm{2}} \\ $$$$\Rightarrow{L}\left({l}\right)=\frac{{b}+{d}}{\mathrm{2}},{K}\left({k}\right)=\frac{{a}+{c}}{\mathrm{2}} \\ $$$${J}=\frac{\frac{{b}+{d}}{\mathrm{2}}+\frac{{a}+{c}}{\mathrm{2}}}{\mathrm{2}}=\frac{{a}+{b}+{c}+{d}}{\mathrm{4}}\:\:\left({i}\right) \\ $$$${midpoint}\:{of}\:{FH}=\frac{\frac{{a}+{d}}{\mathrm{2}}+\frac{{b}+{c}}{\mathrm{2}}}{\mathrm{2}}=\frac{{a}+{d}+{b}+{c}}{\mathrm{4}}\:\left({ii}\right) \\ $$$$ \\ $$$${midpoint}\:{of}\:{EG}=\frac{\frac{{a}+{b}}{\mathrm{2}}+\frac{{d}+{c}}{\mathrm{2}}}{\mathrm{2}}=\frac{{a}+{b}+{d}+{c}}{\mathrm{4}}\:\left({iii}\right) \\ $$$${a},{b},{c},{d},{e},{f},{g},,{k},{l},{are}\:{complex}\:{numbers}. \\ $$$${from}\:{equations}\:{i},{ii},{iii},{we}\:{see}\:{that}: \\ $$$${midpoint}\:{of}:{EG},{FH},{LK},{have}\:{the}\:{same} \\ $$$${cordinates}.{so}\:{they}\:{should}\:{be}\:{the}\:{same} \\ $$$${point}.\:\blacksquare \\ $$

Commented by ajfour last updated on 19/Jun/17

thank you, sir. you cut my long  story short.

$${thank}\:{you},\:{sir}.\:{you}\:{cut}\:{my}\:{long} \\ $$$${story}\:{short}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com