All Questions Topic List
Mechanics Questions
Previous in All Question Next in All Question
Previous in Mechanics Next in Mechanics
Question Number 159293 by ajfour last updated on 15/Nov/21
Commented by ajfour last updated on 15/Nov/21
TryingQ.159085again..
Answered by ajfour last updated on 17/Nov/21
letposition,velocityandacc.ofbottomwheelofboxbex,v,a.dθdt=ωletR=2x=8sinθ;v=8ωcosθ....(i)lettan−12=βθ+β−90°=ϕ(atstartϕ=0)letVbecenterofmassvelocityofbox.andq=25Vx=v−ωqsin(θ+β)=8ωcosθ−ωqsin(θ+β)Vy=−ωqcos(θ+β)V2=64ω2cos2θ+ω2q2−2ωqvsin(θ+β)..(ii)letvelocityofspherebeu.ucosφ=vcosφ−4ωsinθ⇒u2=ω2(8cosθ−4sinθcosφ)2★u2=v2+16ω2sin2θcos2φ−8ωvsinθcosφ..(iii)&1+sinφ=2sinθWhencontactbreaksdudt=0&fromenergyconservation2△Ugm=2g(25−4cosθ−2sinθ)=V2+Iω2+u2...(iii)=v2+ω2q2−2ωqvsin(θ+β)+v2+16ω2sin2θcos2φ−8ωvsinθcosφ+80ω212nowusing..(i)&(ii)inaboveeq.2△Ugmω2={64cos2θ+20−325cosθsin(θ+β)}+{203}{64cos2θ+16sin2θ1−(2sinθ−1)2−64sinθcosθ1−(2sinθ−1)2}⇒2g(25−4cosθ−2sinθ)=u2(8cosθ−4sinθcosφ)2{803+128cos2θ−325cosθsin(θ+β)+16sin2θ1−(2sinθ−1)2−64sinθcosθ1−(2sinθ−1)2}⇒finallyu2(θ)is=2g(25−4cosθ−2sinθ)[8cosθ−4sinθ1−(2sinθ−1)2]2{128cos2θ+325cosθsin(θ+β)+16sin2θ1−(2sinθ−1)2−64sinθcosθ1−(2sinθ−1)2+803}......
Terms of Service
Privacy Policy
Contact: info@tinkutara.com