Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15932 by Tinkutara last updated on 15/Jun/17

A particle is projected from the foot of  an inclined plane having inclination  45°, with the velocity u at an angle θ  (> 45°) with the horizontal in a vertical  plane containing the line of greatest  slope through the point of projection.  Find the value of tan θ if the particle  strikes the plane  (i) Horizontally  (ii) Normally

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$ $$\mathrm{an}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{having}\:\mathrm{inclination} \\ $$ $$\mathrm{45}°,\:\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:{u}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta \\ $$ $$\left(>\:\mathrm{45}°\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{in}\:\mathrm{a}\:\mathrm{vertical} \\ $$ $$\mathrm{plane}\:\mathrm{containing}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{greatest} \\ $$ $$\mathrm{slope}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}. \\ $$ $$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\theta\:\mathrm{if}\:\mathrm{the}\:\mathrm{particle} \\ $$ $$\mathrm{strikes}\:\mathrm{the}\:\mathrm{plane} \\ $$ $$\left(\mathrm{i}\right)\:\mathrm{Horizontally} \\ $$ $$\left(\mathrm{ii}\right)\:\mathrm{Normally} \\ $$

Commented byTinkutara last updated on 15/Jun/17

Answered by ajfour last updated on 15/Jun/17

when it hits the incline horizontally  it is at its max. hright.  tan α=(H/((R/2)))    , and witb α=45°   R = 2H   ((2u^2 sin θcos θ)/g)=((2u^2 sin^2 θ)/(2g))  ⇒  tan θ = 2  or  θ=tan^(−1) (2) .  when it strikes nirmally,  its component of velocity   parallel to incline becomes zero  by the time its displacement  perpendicular to incline becomes  zero.   v_(x′) =ucos (θ−α)−gtsin α=0  or  t=((ucos (θ−α))/(gsin α))      .....(i)   s_(y′) =utsin (θ−α)−(1/2)gt^2 cos α=0  ⇒ t=((2usin (θ−α))/(gcos α))        ...(ii)  equating (ii) and (i):   ((2usin (θ−α))/(gcos α))=((ucos (θ−α))/(gsin α))  ⇒   tan (θ−α)tan α =(1/2)    as α=45°,   tan (θ−45°)×1=(1/2)   θ= 45°+tan^(−1) ((1/2))  .

$${when}\:{it}\:{hits}\:{the}\:{incline}\:{horizontally} \\ $$ $${it}\:{is}\:{at}\:{its}\:{max}.\:{hright}. \\ $$ $$\mathrm{tan}\:\alpha=\frac{{H}}{\left({R}/\mathrm{2}\right)}\:\:\:\:,\:{and}\:{witb}\:\alpha=\mathrm{45}° \\ $$ $$\:{R}\:=\:\mathrm{2}{H} \\ $$ $$\:\frac{\mathrm{2}{u}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta}{{g}}=\frac{\mathrm{2}{u}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{2}{g}} \\ $$ $$\Rightarrow\:\:\mathrm{tan}\:\theta\:=\:\mathrm{2}\:\:{or}\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\:. \\ $$ $${when}\:{it}\:{strikes}\:{nirmally}, \\ $$ $${its}\:{component}\:{of}\:{velocity}\: \\ $$ $${parallel}\:{to}\:{incline}\:{becomes}\:{zero} \\ $$ $${by}\:{the}\:{time}\:{its}\:{displacement} \\ $$ $${perpendicular}\:{to}\:{incline}\:{becomes} \\ $$ $${zero}. \\ $$ $$\:{v}_{{x}'} ={u}\mathrm{cos}\:\left(\theta−\alpha\right)−{gt}\mathrm{sin}\:\alpha=\mathrm{0} \\ $$ $${or}\:\:{t}=\frac{{u}\mathrm{cos}\:\left(\theta−\alpha\right)}{{g}\mathrm{sin}\:\alpha}\:\:\:\:\:\:.....\left({i}\right) \\ $$ $$\:{s}_{{y}'} ={ut}\mathrm{sin}\:\left(\theta−\alpha\right)−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \mathrm{cos}\:\alpha=\mathrm{0} \\ $$ $$\Rightarrow\:{t}=\frac{\mathrm{2}{u}\mathrm{sin}\:\left(\theta−\alpha\right)}{{g}\mathrm{cos}\:\alpha}\:\:\:\:\:\:\:\:...\left({ii}\right) \\ $$ $${equating}\:\left({ii}\right)\:{and}\:\left({i}\right): \\ $$ $$\:\frac{\mathrm{2}{u}\mathrm{sin}\:\left(\theta−\alpha\right)}{{g}\mathrm{cos}\:\alpha}=\frac{{u}\mathrm{cos}\:\left(\theta−\alpha\right)}{{g}\mathrm{sin}\:\alpha} \\ $$ $$\Rightarrow\:\:\:\mathrm{tan}\:\left(\theta−\alpha\right)\mathrm{tan}\:\alpha\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\:\:{as}\:\alpha=\mathrm{45}°,\:\:\:\mathrm{tan}\:\left(\theta−\mathrm{45}°\right)×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\:\theta=\:\mathrm{45}°+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:. \\ $$

Commented byTinkutara last updated on 16/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com