Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 159378 by HongKing last updated on 16/Nov/21

let  x;y>0  such that  x^3  + y^3  = 2  find the minimum value of the  following expression:  P = 2020x + 2021y

letx;y>0suchthatx3+y3=2 findtheminimumvalueofthe followingexpression: P=2020x+2021y

Commented bymr W last updated on 16/Nov/21

P_(max)  exists.  but for x, y>0 P_(min)  doesn′t exist.  only for x, y≥0 P_(min)  exists.

Pmaxexists. butforx,y>0Pmindoesntexist. onlyforx,y0Pminexists.

Commented byHongKing last updated on 16/Nov/21

yes my dear Ser, sorry find the maximum

yesmydearSer,sorryfindthemaximum

Answered by mr W last updated on 16/Nov/21

for extrem value of P the line  2020x+2021y=P should tangent the  curve x^3 +y^3 =2.  2x^2 +3y^2 (dy/dx)=0  x^2 −y^2 ×((2020)/(2021))=0  ⇒y=(√((2021)/(2020)))x  x^3 +((2021)/(2020))(√((2021)/(2020)))x^3 =2  x=((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   y=(√((2021)/(2020)))((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   P_(max) =(2020+2021(√((2021)/(2020))))((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   =2020((2(1+((2021)/(2020))(√((2021)/(2020))))^2 ))^(1/3)   ≈4041.000062

forextremvalueofPtheline 2020x+2021y=Pshouldtangentthe curvex3+y3=2. 2x2+3y2dydx=0 x2y2×20202021=0 y=20212020x x3+2021202020212020x3=2 x=21+20212020202120203 y=2021202021+20212020202120203 Pmax=(2020+202120212020)21+20212020202120203 =20202(1+2021202020212020)23 4041.000062

Commented byHongKing last updated on 16/Nov/21

thank you so much my dear Ser perfect

thankyousomuchmydearSerperfect

Commented bymr W last updated on 16/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com