All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 1594 by 123456 last updated on 24/Aug/15
f(x)=∫x0txdt,x>−1 limx→−1+f(x)=? f(x+1)−f(x)=?
Commented by112358 last updated on 25/Aug/15
f(x)=∫0xtxdt=tx+1x+1∣0x=1x+1(xx+1−0x+1) f(x)=1x+1xx+1,x>−1 f(x+1)−f(x)=1x+2(x+1)x+2−1x+1xx+1 rhs=(x+1)2x+2(x+1)x−xx+1xx =x2+2x+1x+2(x+1)x−xx+1xx =x(x+2)+1x+2(x+1)x−xx+1xx =x[(x+1)x−xxx+1]+(x+1)xx+2 =x[(x+1)x+1−xxx+1]+(x+1)xx+2 =x{(x+1)x+1−xx}(x+2)+(x+1)x+1(x+1)(x+2) =x2(x+1)x+1+2x(x+1)x+1+(x+1)x+1−xx+2−2xx+1(x+1)(x+2) f(x+1)−f(x)=(x+1)x+3−xx+1(x+2)(x+1)(x+2) f(x)=11+xxx+1=x1+xxx=(1−1x+1)xx LetL=limx→−1+f(x)(ifthislimitexists) L=limx→−1+f(x)=limx→−1+[(1−1x+1)xx] L=[limx→−1+(1−1x+1)]×[limx→−1+xx] Letp=limx→−1+xx p=limx→−1+xx=limx→−1+elnxx=limx→−1+exlnx p=elimx→−1+xlnx=e(limx→−1+x)(limx→−1+lnx) p=e−1×ln(−1)=eln(−1)=eln1+iπ p=eiπ=−1 Letq=limx→−1+(1−1x+1) 11+x=(1+x)−1⇒11+x=e−ln(x+1) ∴q=lim1x→−1+−exp(−limx→−1+ln(x+1)) Now,limx→−1+ln(x+1)=−∞ ∴q=1−exp(−1×−∞)=−∞ ∵L=p×q⇒L=−∞×−1=∞ Ldoesnotexist. ⇒limx→−1+f(x)doesnotexist
Commented byRasheed Soomro last updated on 24/Aug/15
Excelent!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com