All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 159469 by 0731619 last updated on 17/Nov/21
Commented by cortano last updated on 17/Nov/21
x=uandy=v{u3+v3=35u2v+uv2=30{u3+v3=35⇒(u+v)3−3uv(u+v)=35uv(u+v)=30⇒(u+v)3=125⇒u+v=5⇒uv=6⇒u(5−u)=6⇒u2−5u+6=0⇒{u=3;v=2u=2;v=3⇒{x=9;y=4x=4;y=9
Answered by FongXD last updated on 17/Nov/21
{x3+y3=35(1)x2y+xy2=30(2)∙take(1)+3(2):⇔x3+3x2y+3xy2+y3=125⇔(x+y)3=53,⇒x+y=5(3)squarebothsides,⇔x+y+2xy=25⇒x+y−xy=25−3xy(1):x3+y3=35⇔(x+y)(x−xy+y)=35⇔5(25−3xy)=35⇔xy=6,⇒xy=36ifyouwanttofindthevaluesofxandywhichsatisfythesystemofEq.above,justsubstitutex=6yinto(3).
Commented by Rasheed.Sindhi last updated on 17/Nov/21
Niceapproach!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com