Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 15948 by tawa tawa last updated on 15/Jun/17

Commented by rahul 19 last updated on 13/Nov/18

Nice Question! will anybody try? I think this Q. can be done by integration by parts...

Answered by Smail last updated on 13/Nov/18

I_n =∫_0 ^(π/2) cos^(2n) xdx=∫_0 ^(π/2) cos^2 xcos^(2n−2) dx  =∫_0 ^(π/2) cos^(2n−2) xdx−∫_0 ^(π/2) sin^2 xcos^(2n−2) xdx  =I_(n−1) −∫sin(x)(sin(x)cos^(2n−2) (x)dx  by parts  u=sinx⇒u′=cosx  v′=sin(x)cos^(2n−2) x⇒v=−(1/(2n−1))cos^(2n−1)   I_n =I_(n−1) +[(1/(2n−1))sin(x)cos^(2n−1) x]_0 ^(π/2) −(1/(2n−1))∫_0 ^(π/2) cos^(2n) dx  =I_(n−1) −(1/(2n−1))I_n   I_n (1+(1/(2n−1)))=I_(n−1) ⇔I_n =((2n−1)/(2n))I_(n−1)   I_(n−1) =((2n−3)/(2n−2))I_(n−2)   I_n =(((2n−1)(2n−3))/(2^2 n(n−1)))I_(n−2)   Generally  I_n =(((2n−1)(2n−3)(2n−5)...1)/(2^n n!))I_0   =((2n(2n−1)(2n−2)(2n−3)(2n−4)(2n−5)...1)/(2^n n!(2n(2n−2)(2n−4)...1))((π/2))  =(((2n)!)/(2^n (n!)(2^n n(n−1)(n−2)...)))((π/2))  I_n =((π(2n)!)/(2^(2n+1) (n!)^2 ))

$${I}_{{n}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}{n}} {xdx}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}} {xcos}^{\mathrm{2}{n}−\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}{n}−\mathrm{2}} {xdx}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {sin}^{\mathrm{2}} {xcos}^{\mathrm{2}{n}−\mathrm{2}} {xdx} \\ $$$$={I}_{{n}−\mathrm{1}} −\int{sin}\left({x}\right)\left({sin}\left({x}\right){cos}^{\mathrm{2}{n}−\mathrm{2}} \left({x}\right){dx}\right. \\ $$$${by}\:{parts} \\ $$$${u}={sinx}\Rightarrow{u}'={cosx} \\ $$$${v}'={sin}\left({x}\right){cos}^{\mathrm{2}{n}−\mathrm{2}} {x}\Rightarrow{v}=−\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}{cos}^{\mathrm{2}{n}−\mathrm{1}} \\ $$$${I}_{{n}} ={I}_{{n}−\mathrm{1}} +\left[\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}{sin}\left({x}\right){cos}^{\mathrm{2}{n}−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}{n}} {dx} \\ $$$$={I}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}{I}_{{n}} \\ $$$${I}_{{n}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\right)={I}_{{n}−\mathrm{1}} \Leftrightarrow{I}_{{n}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}{I}_{{n}−\mathrm{1}} \\ $$$${I}_{{n}−\mathrm{1}} =\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{n}−\mathrm{2}}{I}_{{n}−\mathrm{2}} \\ $$$${I}_{{n}} =\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{3}\right)}{\mathrm{2}^{\mathrm{2}} {n}\left({n}−\mathrm{1}\right)}{I}_{{n}−\mathrm{2}} \\ $$$${Generally} \\ $$$${I}_{{n}} =\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{3}\right)\left(\mathrm{2}{n}−\mathrm{5}\right)...\mathrm{1}}{\mathrm{2}^{{n}} {n}!}{I}_{\mathrm{0}} \\ $$$$=\frac{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{n}−\mathrm{3}\right)\left(\mathrm{2}{n}−\mathrm{4}\right)\left(\mathrm{2}{n}−\mathrm{5}\right)...\mathrm{1}}{\mathrm{2}^{{n}} {n}!\left(\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{n}−\mathrm{4}\right)...\mathrm{1}\right.}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{{n}} \left({n}!\right)\left(\mathrm{2}^{{n}} {n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\right)}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$${I}_{{n}} =\frac{\pi\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} \left({n}!\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com