Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 159480 by ZiYangLee last updated on 17/Nov/21

Commented by bobhans last updated on 18/Nov/21

  { ((z=cos θ +i sin θ)),(((1/z)=cos θ−i sin θ)) :} ;  { ((z^6 =cos 6θ+i sin 6θ)),(((1/z^6 )=cos 6θ−i sin 6θ)) :}   z^6 +(1/z^6 ) = 2cos 6θ  ⇒(z^3 )^2 +((1/z^3 ))^2 =2cos 6θ  ⇒(z^3 +(1/z^3 ))^2 −2=2cos 6θ  ⇒(2cos 3θ)^2 −2=2cos 6θ  ⇒4(4cos^3 θ−3cos θ)^2 −2=2cos 6θ  ⇒4(16cos^6 θ−24cos^4 θ+9cos^2 θ)=2+2cos 6θ   ⇒16cos^6 θ−24(((1+cos 2θ)/2))^2 +9(((1+cos 2θ)/2))=(1/2)(1+cos 6θ)  ⇒16cos^6 θ=6(1+2cos 2θ+((1+cos 4θ)/2))−9(((1+cos 2θ)/2))+(1/2)(1+cos 6θ)  ⇒16cos^6 θ=9+12cos 2θ+3cos 4θ−(9/2)−(9/2)cos 2θ+(1/2)+(1/2)cos 6θ  cos^6 θ=(1/(16))(5+((15)/2)cos 2θ+3cos 4θ+(1/2)cos 6θ)  cos^6 θ=(1/(32))(10+15cos 2θ+6cos 4θ+cos 6θ)

{z=cosθ+isinθ1z=cosθisinθ;{z6=cos6θ+isin6θ1z6=cos6θisin6θz6+1z6=2cos6θ(z3)2+(1z3)2=2cos6θ(z3+1z3)22=2cos6θ(2cos3θ)22=2cos6θ4(4cos3θ3cosθ)22=2cos6θ4(16cos6θ24cos4θ+9cos2θ)=2+2cos6θ16cos6θ24(1+cos2θ2)2+9(1+cos2θ2)=12(1+cos6θ)16cos6θ=6(1+2cos2θ+1+cos4θ2)9(1+cos2θ2)+12(1+cos6θ)16cos6θ=9+12cos2θ+3cos4θ9292cos2θ+12+12cos6θcos6θ=116(5+152cos2θ+3cos4θ+12cos6θ)cos6θ=132(10+15cos2θ+6cos4θ+cos6θ)

Answered by mathmax by abdo last updated on 18/Nov/21

f(a)=∫_0 ^a (a^2 −x^2 )^(5/2)  dx  changement x=asint give   f(a)=∫_0 ^(π/2) (a^2 −a^2 sin^2 t)^(5/2) acost dt =a∫_0 ^(π/2) a^5 (cos^2 t)^(5/2)  cost dt  =a^6  ∫_0 ^(π/2) cos^6  t dt  we have the formulae  2∫_0 ^(π/2)  cos^(2p−1) x sin^(2q−1) x dx=B(p,q)=((Γ(p).Γ(q))/(Γ(p+q)))  2p−1=6 and 2q−1=0 ⇒p=(7/2) and q=(1/2) ⇒  f(a)=(a^6 /2)×2∫_0 ^(π/2)  cos^(2((7/2))−1) t sin^(2((1/2))−1) tdt  =(a^6 /2)B((7/2),(1/2))=(a^6 /2)×((Γ((7/2)).Γ((1/2)))/(Γ((7/2)+(1/2))))=((√π)/2)a^6  .((Γ((7/2)))/(3!))  =((√π)/(12))a^6  Γ((7/2))  we know  Γ(x+1)=xΓ(x)⇒  Γ((7/2))=Γ((5/2)+1)=(5/2)Γ((5/2))=(5/2)Γ((3/2)+1)=(5/2).(3/2)Γ((3/2))  =((15)/4)Γ((1/2)+1)=((15)/4).(1/2)Γ((1/2))=((15)/8)(√π)⇒  f(a)=((√π)/(12)) a^6 .((15(√π))/8) =((15πa^6 )/(12.8)) =((3.5πa^6 )/(3.4.8)) =((5πa^6 )/(32))

f(a)=0a(a2x2)52dxchangementx=asintgivef(a)=0π2(a2a2sin2t)52acostdt=a0π2a5(cos2t)52costdt=a60π2cos6tdtwehavetheformulae20π2cos2p1xsin2q1xdx=B(p,q)=Γ(p).Γ(q)Γ(p+q)2p1=6and2q1=0p=72andq=12f(a)=a62×20π2cos2(72)1tsin2(12)1tdt=a62B(72,12)=a62×Γ(72).Γ(12)Γ(72+12)=π2a6.Γ(72)3!=π12a6Γ(72)weknowΓ(x+1)=xΓ(x)Γ(72)=Γ(52+1)=52Γ(52)=52Γ(32+1)=52.32Γ(32)=154Γ(12+1)=154.12Γ(12)=158πf(a)=π12a6.15π8=15πa612.8=3.5πa63.4.8=5πa632

Terms of Service

Privacy Policy

Contact: info@tinkutara.com