All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 159480 by ZiYangLee last updated on 17/Nov/21
Commented by bobhans last updated on 18/Nov/21
{z=cosθ+isinθ1z=cosθ−isinθ;{z6=cos6θ+isin6θ1z6=cos6θ−isin6θz6+1z6=2cos6θ⇒(z3)2+(1z3)2=2cos6θ⇒(z3+1z3)2−2=2cos6θ⇒(2cos3θ)2−2=2cos6θ⇒4(4cos3θ−3cosθ)2−2=2cos6θ⇒4(16cos6θ−24cos4θ+9cos2θ)=2+2cos6θ⇒16cos6θ−24(1+cos2θ2)2+9(1+cos2θ2)=12(1+cos6θ)⇒16cos6θ=6(1+2cos2θ+1+cos4θ2)−9(1+cos2θ2)+12(1+cos6θ)⇒16cos6θ=9+12cos2θ+3cos4θ−92−92cos2θ+12+12cos6θcos6θ=116(5+152cos2θ+3cos4θ+12cos6θ)cos6θ=132(10+15cos2θ+6cos4θ+cos6θ)
Answered by mathmax by abdo last updated on 18/Nov/21
f(a)=∫0a(a2−x2)52dxchangementx=asintgivef(a)=∫0π2(a2−a2sin2t)52acostdt=a∫0π2a5(cos2t)52costdt=a6∫0π2cos6tdtwehavetheformulae2∫0π2cos2p−1xsin2q−1xdx=B(p,q)=Γ(p).Γ(q)Γ(p+q)2p−1=6and2q−1=0⇒p=72andq=12⇒f(a)=a62×2∫0π2cos2(72)−1tsin2(12)−1tdt=a62B(72,12)=a62×Γ(72).Γ(12)Γ(72+12)=π2a6.Γ(72)3!=π12a6Γ(72)weknowΓ(x+1)=xΓ(x)⇒Γ(72)=Γ(52+1)=52Γ(52)=52Γ(32+1)=52.32Γ(32)=154Γ(12+1)=154.12Γ(12)=158π⇒f(a)=π12a6.15π8=15πa612.8=3.5πa63.4.8=5πa632
Terms of Service
Privacy Policy
Contact: info@tinkutara.com