Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15955 by Tinkutara last updated on 16/Jun/17

The motion of a particle moving along  x-axis is represented by the equation  (dv/dt) = 6 − 3v, where v is in m/s and t is  in second. If the particle is at rest at t =  0, then  (1) The speed of the particle is 2 m/s  when the acceleration of particle is  zero  (2) After a long time the particle moves  with a constant velocity of 2 m/s  (3) The speed is 0.1 m/s, when the  acceleration is half of its initial value  (4) The magnitude of final acceleration  is 6 m/s^2

$$\mathrm{The}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{along} \\ $$$${x}-\mathrm{axis}\:\mathrm{is}\:\mathrm{represented}\:\mathrm{by}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\frac{{dv}}{{dt}}\:=\:\mathrm{6}\:−\:\mathrm{3}{v},\:\mathrm{where}\:{v}\:\mathrm{is}\:\mathrm{in}\:\mathrm{m}/\mathrm{s}\:\mathrm{and}\:{t}\:\mathrm{is} \\ $$$$\mathrm{in}\:\mathrm{second}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{at}\:{t}\:= \\ $$$$\mathrm{0},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{2}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{zero} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{After}\:\mathrm{a}\:\mathrm{long}\:\mathrm{time}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{moves} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{2}\:\mathrm{m}/\mathrm{s} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{is}\:\mathrm{0}.\mathrm{1}\:\mathrm{m}/\mathrm{s},\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{is}\:\mathrm{half}\:\mathrm{of}\:\mathrm{its}\:\mathrm{initial}\:\mathrm{value} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{final}\:\mathrm{acceleration} \\ $$$$\mathrm{is}\:\mathrm{6}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 16/Jun/17

∫(dv/(6−3v))=∫dt  −(1/3)ln (6−3v)=t+C  t=0,v=0  −(1/3)ln 6=C  (1/3)ln ((6−3v)/6)=−t  ((6−3v)/6)=e^(−3t) ⇒v=2(1−3e^(−t) )   ...(A)  a=0⇒(dv/dt)=0⇒6−3v=0⇒v=2  t→∞,e^(−3t) →0⇒v=2 (from A)  t→∞,v→z2,(dv/dt)→0  t=0,v=0⇒a_0 =6−3v=6  a_t =3⇒v=1

$$\int\frac{{dv}}{\mathrm{6}−\mathrm{3}{v}}=\int{dt} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{6}−\mathrm{3}{v}\right)={t}+{C} \\ $$$${t}=\mathrm{0},{v}=\mathrm{0} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{6}={C} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\frac{\mathrm{6}−\mathrm{3}{v}}{\mathrm{6}}=−{t} \\ $$$$\frac{\mathrm{6}−\mathrm{3}{v}}{\mathrm{6}}={e}^{−\mathrm{3}{t}} \Rightarrow{v}=\mathrm{2}\left(\mathrm{1}−\mathrm{3}{e}^{−{t}} \right)\:\:\:...\left({A}\right) \\ $$$${a}=\mathrm{0}\Rightarrow\frac{{dv}}{{dt}}=\mathrm{0}\Rightarrow\mathrm{6}−\mathrm{3}{v}=\mathrm{0}\Rightarrow{v}=\mathrm{2} \\ $$$${t}\rightarrow\infty,{e}^{−\mathrm{3}{t}} \rightarrow\mathrm{0}\Rightarrow{v}=\mathrm{2}\:\left({from}\:{A}\right) \\ $$$${t}\rightarrow\infty,{v}\rightarrow{z}\mathrm{2},\frac{{dv}}{{dt}}\rightarrow\mathrm{0} \\ $$$${t}=\mathrm{0},{v}=\mathrm{0}\Rightarrow{a}_{\mathrm{0}} =\mathrm{6}−\mathrm{3}{v}=\mathrm{6} \\ $$$${a}_{{t}} =\mathrm{3}\Rightarrow{v}=\mathrm{1} \\ $$

Commented by Tinkutara last updated on 16/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com