Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 159552 by Ar Brandon last updated on 18/Nov/21

Commented by Ar Brandon last updated on 18/Nov/21

Prove the above results

Provetheaboveresults

Commented by mindispower last updated on 19/Nov/21

bonjour tes Etudiant?

bonjourtesEtudiant?

Commented by Ar Brandon last updated on 19/Nov/21

Oui monsieur. E^� tudiant en 1^(er)  anne^� e IUT.

Ouimonsieur.Etudiant´en1erannee´IUT.

Commented by puissant last updated on 20/Nov/21

��������

Answered by mindispower last updated on 19/Nov/21

(1)  let f(b)=∫_0 ^∞ ((cos(ax)ln(x^2 +bz^2 ))/(x^2 +z^2 )),b≥0  f′(b)=∫_0 ^∞ ((z^2 cos(ax))/((x^2 +z^2 )(x^2 +bz^2 )))dx  =z^2 ∫_0 ^∞ ((cos(ax))/((x^2 +z^2 )(x^2 +bz^2 )))dx=(z^2 /2)∫_(−∞) ^∞ ((cos(ax))/((x^2 +z^2 )(x^2 +bz^2 )))dx  A=(z^2 /2)∫_(−∞) ^∞ (e^(iax) /((x^2 +z^2 )(x^2 +bz^2 )))dx=  =z^2 .iπ.(e^(−az) /(2iz)).(1/((1−b)z^2 ))+iπ.(e^(−az(√b)) /(z^2 (1−b).(2iz(√b))))  =(π/(2z))((e^(−az) /((1−b)))+(e^(−az(√b)) /((1−b)(√b))))  f(b)=(π/(2z))∫(e^(−az) /(1−b))+(e^(−az(√b)) /((1−b)(√b)))db  =(π/(2z))(−ln(1−b)e^(−az) +∫(e^(−az(√b)) /((1−b)(√b)))db∣_((√b)=u_ ) ^   ∫(e^(−auz) /((1−u^2 ))).2du  =∫(e^(−auz) /(1−u))+(e^(−auz) /(1+u))du  =−∫(e^(−az(1−x)) /x)dx+∫(e^(−az(y−1)) /y)dy  =e^(−az) .−∫(e^(azx) /(azx))dazx+e^(az) ∫(e^(−azy) /(azy))d(azy)  =e^(−az) −E_1 (−azx)+e^(az) .E_1 (azy)  =−e^(−az) E_1 (−az(1−(√b)))+e^(az) (az(1+(√b)))  −e^(az) .E_i (−az(1+(√b))+e^(−az) E_i (az(1−(√b)))  we get   (π/(2z))(e^(−az) (E_i (az(1−(√b))−ln(1−b))−e^(az) E_i (−az(1+(√b))))+C  f(0)=∫_0 ^∞ ((cos(ax)ln(x^2 ))/(x^2 +z^2 ))dx=2∫_0 ^∞ ((cos(ax)ln(x))/(x^2 +z^2 ))dx∣_(z≠0)   A=∫_(−∞) ^0 ((cos(ax)ln(x))/(x^2 +z^2 ))+∫_0 ^∞ ((cos(ax)ln(x))/(x^2 +z^2 ))=Re(2iπ.(e^(−az) /(2iz))ln(iz))  =Reπ(e^(−az) /z)(ln(z)+((iπ)/2))=π(e^(−az) /z)ln(z)  ln(−x)=ln(x)+iπ,∀x>0  A2∫_0 ^( ana∞d) ((cos(ax)ln(x))/(x^2 +z^2 ))dx+iπ∫_0 ^∞ ((cos(ax))/(x^2 +z^2 ))xgood  ∫_0 ^∞ ((cos(ax)ln(x^2 ))/(x^2 +z^2 ))=f(0)=(π/z)e^(−az) ln(z),∀z,Re(z)>0  C=(π/z)e^(−az) ln(z)−(π/(2z))e^(−az) E_i (az)+(π/(2z))e^(az) E_i (−az)  E_i (x)=γ+ln(x)+o(x),x→1 too bee continued  not?many times now  i think its a good path E_i ...related to chi ..  and Shi

(1)letf(b)=0cos(ax)ln(x2+bz2)x2+z2,b0f(b)=0z2cos(ax)(x2+z2)(x2+bz2)dx=z20cos(ax)(x2+z2)(x2+bz2)dx=z22cos(ax)(x2+z2)(x2+bz2)dxA=z22eiax(x2+z2)(x2+bz2)dx==z2.iπ.eaz2iz.1(1b)z2+iπ.eazbz2(1b).(2izb)=π2z(eaz(1b)+eazb(1b)b)f(b)=π2zeaz1b+eazb(1b)bdb=π2z(ln(1b)eaz+eazb(1b)bdbb=ueauz(1u2).2du=eauz1u+eauz1+udu=eaz(1x)xdx+eaz(y1)ydy=eaz.eazxazxdazx+eazeazyazyd(azy)=eazE1(azx)+eaz.E1(azy)=eazE1(az(1b))+eaz(az(1+b))eaz.Ei(az(1+b)+eazEi(az(1b))wegetπ2z(eaz(Ei(az(1b)ln(1b))eazEi(az(1+b)))+Cf(0)=0cos(ax)ln(x2)x2+z2dx=20cos(ax)ln(x)x2+z2dxz0A=0cos(ax)ln(x)x2+z2+0cos(ax)ln(x)x2+z2=Re(2iπ.eaz2izln(iz))=Reπeazz(ln(z)+iπ2)=πeazzln(z)ln(x)=ln(x)+iπ,x>0A20anadcos(ax)ln(x)x2+z2dx+iπ0cos(ax)x2+z2xgood0cos(ax)ln(x2)x2+z2=f(0)=πzeazln(z),z,Re(z)>0C=πzeazln(z)π2zeazEi(az)+π2zeazEi(az)Ei(x)=γ+ln(x)+o(x),x1toobeecontinuednot?manytimesnowithinkitsagoodpathEi...relatedtochi..andShi

Commented by Ar Brandon last updated on 19/Nov/21

Belle de^� monstration, monsieur!

Belledemonstration´,monsieur!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com