Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 159556 by mnjuly1970 last updated on 18/Nov/21

    prove that:        2∤ a ⇒ 240∣ a^( 5)  − a

provethat:2a240a5a

Answered by floor(10²Eta[1]) last updated on 18/Nov/21

240=2^4 .3.5  •by fermat: a^5 ≡a(mod5)⇒5∣a^5 −a  •a^5 −a=a(a^4 −1)=a(a^2 −1)(a^2 +1)  =(a−1)a(a+1)(a^2 +1), but since this has  a product of three consecutive numbers  it has to be multiple of 3⇒3∣a^5 −a  •now, a^5 −a=a(a^2 −1)(a^2 +1), since a is odd,  a=2k+1∴a^5 −a=(2k+1)((2k+1)^2 −1)((2k+1)^2 +1)  =(2k+1)(4k^2 +4k)(4k^2 +4k+2)  =8(2k+1)(k^2 +k)(2k^2 +2k+1), so this  is a multiple of 8⇒if we show that   (2k+1)(k^2 +k)(2k^2 +2k+1) is even, we′re done  but (2k+1)(k^2 +k)(2k^2 +2k+1)  =(2k+1)k(k+1)(2k^2 +2k+1) has a product  of two consecutive numbers, so it′s divisible by 2  ⇒16∣a^5 −a  16.3.5=240∣a^5 −a

240=24.3.5byfermat:a5a(mod5)5a5aa5a=a(a41)=a(a21)(a2+1)=(a1)a(a+1)(a2+1),butsincethishasaproductofthreeconsecutivenumbersithastobemultipleof33a5anow,a5a=a(a21)(a2+1),sinceaisodd,a=2k+1a5a=(2k+1)((2k+1)21)((2k+1)2+1)=(2k+1)(4k2+4k)(4k2+4k+2)=8(2k+1)(k2+k)(2k2+2k+1),sothisisamultipleof8ifweshowthat(2k+1)(k2+k)(2k2+2k+1)iseven,weredonebut(2k+1)(k2+k)(2k2+2k+1)=(2k+1)k(k+1)(2k2+2k+1)hasaproductoftwoconsecutivenumbers,soitsdivisibleby216a5a16.3.5=240a5a

Commented by mnjuly1970 last updated on 19/Nov/21

thanks alot ..very nice ali

thanksalot..veryniceali

Answered by Rasheed.Sindhi last updated on 19/Nov/21

 •240∣a^( 5) −a⇔ { ((16∣ a^( 5) −a)),((   3∣ a^( 5) −a)),((   5∣ a^( 5) −a)) :}[∵ 240=16.3.5]   •a^5 −a=a(a−1)(a+1)(a^2 +1)  (i)To prove:16∣ a^( 5)  − a  a∈O: a may be either 4k+1 or 4k+3  a=4k+1:  a^5 −a=a(a−1)(a+1)(a^2 +1)         =(4k+1)(4k)(4k+2)(16k^2 +8k+2)  =16(4k+1)(k)(2k+1)(8k^2 +4k+1)  a=4k+3:  a^5 −a=(4k+3)(4k+2)(4k+4)(16k^2 +24k+10)  =16(4k+3)(2k+1)(k+1)(8k^2 +12k+5)  ∴ 16∣a^5 −a    determinant ((( 16∣a^5 −a)))...............A  (ii)To prove:3∣ a^( 5)  − a  a=3k→3∣a  a=3k+1→3∣a−1  a=3k+2→3∣a+1  ∴ 3 ∣a^5 −a   determinant (((3 ∣a^5 −a))).................B  (iii)To prove:5∣ a^( 5)  − a  a=5k→5∣a  a=5k+1→5∣a−1  a=5k+2→5∣a^2 +1  a=5k+3→5∣a^2 +1  a=5k+4→5∣a+1  ∴ 5∣a^5 −a   determinant (((5∣a^5 −a))).................C  From A,B & C:            determinant (((240∣a^5 −a^((16.3.5)∣a^5 −a_(OR) ) )))

240a5a{16a5a3a5a5a5a[240=16.3.5]a5a=a(a1)(a+1)(a2+1)(i)Toprove:16a5aaO:amaybeeither4k+1or4k+3a=4k+1:a5a=a(a1)(a+1)(a2+1)=(4k+1)(4k)(4k+2)(16k2+8k+2)=16(4k+1)(k)(2k+1)(8k2+4k+1)a=4k+3:a5a=(4k+3)(4k+2)(4k+4)(16k2+24k+10)=16(4k+3)(2k+1)(k+1)(8k2+12k+5)16a5a16a5a...............A(ii)Toprove:3a5aa=3k3aa=3k+13a1a=3k+23a+13a5a3a5a.................B(iii)Toprove:5a5aa=5k5aa=5k+15a1a=5k+25a2+1a=5k+35a2+1a=5k+45a+15a5a5a5a.................CFromA,B&C:240a5a(16.3.5)a5aOR

Commented by mnjuly1970 last updated on 19/Nov/21

excellent sir Rasheed

excellentsirRasheed

Terms of Service

Privacy Policy

Contact: info@tinkutara.com