All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 159612 by cortano last updated on 19/Nov/21
Answered by Ar Brandon last updated on 19/Nov/21
I=∫2+x3x3dx,x=u3⇒dx=3u2du=3∫2+uu⋅u2du=3∫u2+udu=3∫(u+2)32−2u+2du=65(u+2)52−4(u+2)32+C=65(x3+2)52−4(x3+2)32+C
Answered by tounghoungko last updated on 19/Nov/21
I=∫2+x3x3dx;let2+x3=ux3=u2−2⇒dxx3=6uu3dudxx3=6u(u2−2)du=(6u3−12u)duI=∫u(6u3−12u)duI=∫(6u4−12u2)duI=65u5−4u3+cI=65(2+x3)5−4(2+x3)3+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com