All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 159635 by cortano last updated on 19/Nov/21
Commented by cortano last updated on 19/Nov/21
tanα=x4;tanβ=3x123=x43tanβ=13tanα⇒α+β+105°=180°⇒α+β=75°⇒tan(α+β)=1+131−13⇒(1+13)tanα1−13tan2α=3+13−1=2+3⇒(1+3)tanα=(2+3)(3−tan2α)⇒(1+3)tanα=(3+23)−(2+3)tan2α⇒(2+3)tan2α+(1+3)tanα−(3+23)=0⇒tanα=−1−3+4+23+4(2+3)(3+23)2(2+3)⇒tanα=−1−3+4+23+4(12+73)2(2+3)⇒tanα=−1−3+52+3032(2+3)=1⇒{α=45°β=30°thenx=4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com