All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 159648 by cortano last updated on 19/Nov/21
y=sin2(2x)y(n)=?
Answered by FongXD last updated on 19/Nov/21
∙y=12(1−cos4x)=12−12cos4x∙y′=2sin4x=−22(1)−1cos(π2+4x)∙y″=8sin(π2+4x)=−22(2)−1cos(2π2+4x)∙y‴=32sin(2π2+4x)=−22(3)−1cos(3π2+4x)..........................................................supposethatit′strueallthewayuptok−thterm:y(k)=−22k−1cos(kπ2+4x)theny(k+1)=[−22k−1cos(kπ2+4x)]′⇔y(k+1)=22k−1×4sin(kπ2+4x)⇒y(k+1)=−22(k+1)−1cos[(k+1)π2+4x]✓therefore,y(n)=−22n−1cos(nπ2+4x)
Commented by bobhans last updated on 19/Nov/21
ory(n)=−22n−1sin(4x+π2+nπ2)y(n)=−22n−1sin(4x+(n+1)π2)ory(n)=−22n−1sin(π2−(4x+nπ2))y(n)=22n−1sin(4x+(n−1)π2)
Answered by mathmax by abdo last updated on 20/Nov/21
y(x)=sin2(2x)=1−cos(4x)2=12−12×ei4x+e−i4x2=12−14e4ix−14e−4ix⇒forn>0y(n)(x)=−14(4i)ne4ix−14(−4i)ne−4ix=−4n−1ine4ix−4n−1(−i)ne−4ix=−4n−1{ine4ix+(−i)ne−4ix}=−4n−1{einπ2e4ix+e−inπ2e−4ix}=−4n−1{ei(nπ2+4x)+e−i(nπ2+4x)}y(n)(x)=−2.4n−1cos(4x+nπ2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com