Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 159653 by MathsFan last updated on 19/Nov/21

 The equation x^2 +2xp+q=0   and x^2 +2ax+b=0 have common  roots, show that (q−b)^2 +4(a−p)(aq−pb)=0

Theequationx2+2xp+q=0andx2+2ax+b=0havecommonroots,showthat(qb)2+4(ap)(aqpb)=0

Answered by Rasheed.Sindhi last updated on 19/Nov/21

The equations have common roots  ⇒They′re equivalent:  ((2p)/(2a))=(q/b)  ⇒(p/a)=(q/b)⇒p=((aq)/b)  (q−b)^2 +4(a−p)(aq−pb)  =(q−b)^2 +4(a−((aq)/b))(aq−b(((aq)/b)))  =(q−b)^2 +4(((ab−aq)/b))(((abq−abq)/b))  =(q−b)^2 ≠0 in general.  Only  equal to 0 when q=b

TheequationshavecommonrootsTheyreequivalent:2p2a=qbpa=qbp=aqb(qb)2+4(ap)(aqpb)=(qb)2+4(aaqb)(aqb(aqb))=(qb)2+4(abaqb)(abqabqb)=(qb)20ingeneral.Onlyequalto0whenq=b

Commented by MathsFan last updated on 19/Nov/21

thank you sir

thankyousir

Commented by mr W last updated on 19/Nov/21

please recheck sir:  it must be q=b! otherwise there are  no common roots!  ⇒They′re equivalent:  ((2p)/(2a))=(q/b)=((1 (coef. of x^2  term))/1)  ⇒p=a and q=b    example:  x^2 +3x+4=0 and x^2 +6x+8=0 have  no common roots, even (3/6)=(4/8).

pleaserechecksir:itmustbeq=b!otherwisetherearenocommonroots!Theyreequivalent:2p2a=qb=1(coef.ofx2term)1p=aandq=bexample:x2+3x+4=0andx2+6x+8=0havenocommonroots,even36=48.

Commented by Rasheed.Sindhi last updated on 20/Nov/21

Right Sir,ThanX!

RightSir,ThanX!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com