All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 159670 by Ar Brandon last updated on 19/Nov/21
Answered by puissant last updated on 20/Nov/21
1)Un=nn3+1∼+∞nn3=1n2ainsi,sioncomparelaseriede1n2auneseriederiemannquiestconvergente,onremarquequecetteserieconvergeegalement..2)Un=nn2+n∼+∞nn2∼1n32ainsicetteserieestconvergentecarelleestcomparableauneseriedeRiemannquiconverge...3)Un=nsin(1n)encalculantlalimite,ona:limn→+∞nsin(1n)=limn→+∞sin(1n)1n=1etlaserielaseriedivergegrossierement`..4)Un=1nln(1+1n)Eneffet,ona:ln(1+1n)∼+∞1nDoncUn∼+∞1nquiestdoncdivergenteparcomparaisonauneseriederiemanndivergente..5)Un=(−1)n+nn2+1Eneffet,(−1)n+n∼+∞ndeplus,n2+1∼+∞n2ainsi,Un∼+∞1netdivergeparcomparaisonauneseriederiemanndivervente...6)Un=1n!enfait,∀n⩾2,1n!⩽12n−1ainsiparcomparaisonauneseriegeometriqueconvergente,laserieconverge..7)Un=3n+n45n−2nonremarqueaisementque3n+n4∼+∞3net5n−2n∼+∞5ndoncUn∼+∞(35)nainsi,parcomparaisonauneseriegeometriqueconvergente,laserieconverge..................Lepuissant..............
Commented by Ar Brandon last updated on 20/Nov/21
Hum!mercibro.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com