Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 159680 by cortano last updated on 20/Nov/21

        ∫_( 0) ^( (π/6))  ((sin x sin (x+60°) sin (x+120°))/(cos 3x + sin 3x)) dx=?

0π6sinxsin(x+60°)sin(x+120°)cos3x+sin3xdx=?

Commented by cortano last updated on 20/Nov/21

 let θ=3x ⇒I=(1/(12))∫_0 ^( (π/2))  ((sin  θ)/(cos θ+sin θ)) dθ  2I= (1/(12))∫_( 0) ^( (π/2))  ((sin θ+cos θ)/(cos θ+sin θ)) dθ  I= (1/(24)) ∫_( 0) ^( (π/2))  dθ = [(θ/(24)) ]_0 ^(π/2) = (π/(48))

letθ=3xI=1120π2sinθcosθ+sinθdθ2I=1120π2sinθ+cosθcosθ+sinθdθI=1240π2dθ=[θ24]0π2=π48

Commented by tounghoungko last updated on 20/Nov/21

 ⇒sin (x+60°)sin (x+120°)   = ((1/2) sin x+((√3)/2)cos x)(−(1/2)sin x+((√3)/2)cos x)  = (3/4)cos^2 x−(1/4)sin^2 x =(3/4)(1−sin^2 x)−(1/4)sin^2 x  = (3/4)−sin^2  x  ⇒ sin x((3/4)−sin^2 x)=(1/4)(3sin x−4sin^3 x)  = (1/4)sin 3x     I = (1/4)∫_( 0) ^( (π/6))  ((sin 3x)/(cos 3x+sin 3x)) dx

sin(x+60°)sin(x+120°)=(12sinx+32cosx)(12sinx+32cosx)=34cos2x14sin2x=34(1sin2x)14sin2x=34sin2xsinx(34sin2x)=14(3sinx4sin3x)=14sin3xI=140π6sin3xcos3x+sin3xdx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com