All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 159680 by cortano last updated on 20/Nov/21
∫0π6sinxsin(x+60°)sin(x+120°)cos3x+sin3xdx=?
Commented by cortano last updated on 20/Nov/21
letθ=3x⇒I=112∫0π2sinθcosθ+sinθdθ2I=112∫0π2sinθ+cosθcosθ+sinθdθI=124∫0π2dθ=[θ24]0π2=π48
Commented by tounghoungko last updated on 20/Nov/21
⇒sin(x+60°)sin(x+120°)=(12sinx+32cosx)(−12sinx+32cosx)=34cos2x−14sin2x=34(1−sin2x)−14sin2x=34−sin2x⇒sinx(34−sin2x)=14(3sinx−4sin3x)=14sin3xI=14∫0π6sin3xcos3x+sin3xdx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com