Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 159720 by tounghoungko last updated on 20/Nov/21

        L = lim_(x→(π/3))  ((3−4sin^2 x)/(sin 2x−sin x)) ?        Q = lim_(x→0)  [(1/x^2 ) ((2/(cos^2 x)) +cos x−3)] ?

L=limxπ334sin2xsin2xsinx?Q=limx0[1x2(2cos2x+cosx3)]?

Commented by cortano last updated on 20/Nov/21

      L = lim_(x→(π/3))  ((3−4sin^2 x)/(sin 2x−sin x))       L= lim_(x→(π/3))  ((3−4(1−cos^2 x))/(sin x(2cos x−1)))      L= lim_(x→(π/3))  ((4cos^2 x−1)/(sin x(2cos x−1)))      L= lim_(x→(π/3))  ((2cos x+1)/(sin x)) = (2/((√3)/2)) = (4/( (√3)))

L=limxπ334sin2xsin2xsinxL=limxπ334(1cos2x)sinx(2cosx1)L=limxπ34cos2x1sinx(2cosx1)L=limxπ32cosx+1sinx=232=43

Answered by blackmamba last updated on 20/Nov/21

  determinant (((Q=lim_(x→0)  (((cos^3 x−3cos^2 x+2)/(x^2  cos^2 x))))),((Q= lim_(x→0) (((cos x−1)/x^2 ))(((cos^2 x−2cos x−2)/(cos^2 x))))),((Q=−3.(−2)((1/4))= 1.5 )))

Q=limx0(cos3x3cos2x+2x2cos2x)Q=limx0(cosx1x2)(cos2x2cosx2cos2x)Q=3.(2)(14)=1.5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com