All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 159720 by tounghoungko last updated on 20/Nov/21
L=limx→π33−4sin2xsin2x−sinx?Q=limx→0[1x2(2cos2x+cosx−3)]?
Commented by cortano last updated on 20/Nov/21
L=limx→π33−4sin2xsin2x−sinxL=limx→π33−4(1−cos2x)sinx(2cosx−1)L=limx→π34cos2x−1sinx(2cosx−1)L=limx→π32cosx+1sinx=232=43
Answered by blackmamba last updated on 20/Nov/21
Q=limx→0(cos3x−3cos2x+2x2cos2x)Q=limx→0(cosx−1x2)(cos2x−2cosx−2cos2x)Q=−3.(−2)(14)=1.5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com