All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 159727 by blackmamba last updated on 20/Nov/21
limx→01+tan(1−(xsinx))x3?
Answered by FongXD last updated on 20/Nov/21
L=limx→0+[1+tan(1−xsinx)]1x3L=limx→0+{[1+tan(1−xsinx)]1tan(1−xsinx)}tan(1−xsinx)x3L=limex→0+tan(1−xsinx)x3=elimx→0+tan(1−xsinx)1−xsinx×sinx−xx3sinxL=elimx→0+sinx−xx3×limx→0+1sinxwhereM=limx→0+sinx−xx3=limx→0+sin3x−3x27x3(changexto3x)⇔27M=limx→0+3sinx−4sin3x−3xx3=3limx→0+sinx−xx3−4limx→0+(sinxx)3⇔27M=3M−4,⇒M=limx→0+sinx−xx3=−16thenL=e−16limx→0+1sinx=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com