Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 15993 by ajfour last updated on 16/Jun/17

Commented by ajfour last updated on 16/Jun/17

 answer to Q.15969

$$\:{answer}\:{to}\:{Q}.\mathrm{15969}\: \\ $$

Answered by ajfour last updated on 19/Jun/17

let radii of circles be a, b, c    with a<b<c .   as triangle has its vertices on   each of the three circles, and  triangle is equilateral, we must  have for its construction:    d, h, and k (as shown in diagram  above ).  Let AB be d units above x-axes.  equation of AB is then            y=d     let C have coordinates (x_C  , k+d)  As A lies on circle with radius a,    and also on AB, we have      x_A =x_C −h    and   y_A =d      (x_C −h)^2 +d^2 = a^2      .....(i)   similarly for point B(x_C +h, d)      (x_C +h)^2 +d^( 2) =b^2       .....(ii)  and for point C (x_C  , k+d)       x_C ^2  +(k+d)^2 =c^2         .....(iii)  and finally , as Δ is equilateral,  tan ∠CAB=(k/h)         or      (k/h) =tan (π/3) =(√3)   ....(iv)   solving them (is tedious),    ......     ......       ......   solving .....

$${let}\:{radii}\:{of}\:{circles}\:{be}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}} \\ $$$$\:\:{with}\:\boldsymbol{{a}}<\boldsymbol{{b}}<\boldsymbol{{c}}\:. \\ $$$$\:{as}\:{triangle}\:{has}\:{its}\:{vertices}\:{on} \\ $$$$\:{each}\:{of}\:{the}\:{three}\:{circles},\:{and} \\ $$$${triangle}\:{is}\:{equilateral},\:{we}\:{must} \\ $$$${have}\:{for}\:{its}\:{construction}: \\ $$$$\:\:\boldsymbol{{d}},\:\boldsymbol{{h}},\:{and}\:\boldsymbol{{k}}\:\left({as}\:{shown}\:{in}\:{diagram}\right. \\ $$$$\left.{above}\:\right). \\ $$$${Let}\:{AB}\:{be}\:\boldsymbol{{d}}\:{units}\:{above}\:{x}-{axes}. \\ $$$${equation}\:{of}\:{AB}\:{is}\:{then}\: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\boldsymbol{{d}}\:\:\: \\ $$$${let}\:{C}\:{have}\:{coordinates}\:\left(\boldsymbol{{x}}_{{C}} \:,\:\boldsymbol{{k}}+\boldsymbol{{d}}\right) \\ $$$${As}\:{A}\:{lies}\:{on}\:{circle}\:{with}\:{radius}\:\boldsymbol{{a}}, \\ $$$$\:\:{and}\:{also}\:{on}\:{AB},\:{we}\:{have} \\ $$$$\:\:\:\:{x}_{{A}} ={x}_{{C}} −{h}\:\:\:\:{and}\:\:\:{y}_{{A}} ={d} \\ $$$$\:\:\:\:\left({x}_{{C}} −{h}\right)^{\mathrm{2}} +{d}^{\mathrm{2}} =\:{a}^{\mathrm{2}} \:\:\:\:\:.....\left({i}\right) \\ $$$$\:{similarly}\:{for}\:{point}\:{B}\left({x}_{{C}} +{h},\:{d}\right) \\ $$$$\:\:\:\:\left({x}_{{C}} +{h}\right)^{\mathrm{2}} +{d}^{\:\mathrm{2}} ={b}^{\mathrm{2}} \:\:\:\:\:\:.....\left({ii}\right) \\ $$$${and}\:{for}\:{point}\:{C}\:\left({x}_{{C}} \:,\:{k}+{d}\right) \\ $$$$\:\:\:\:\:{x}_{{C}} ^{\mathrm{2}} \:+\left({k}+{d}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\:\:\:\:\:\:.....\left({iii}\right) \\ $$$${and}\:{finally}\:,\:{as}\:\Delta\:{is}\:{equilateral}, \\ $$$$\mathrm{tan}\:\angle{CAB}=\frac{{k}}{{h}}\:\:\: \\ $$$$\:\:\:\:{or}\:\:\:\:\:\:\frac{{k}}{{h}}\:=\mathrm{tan}\:\frac{\pi}{\mathrm{3}}\:=\sqrt{\mathrm{3}}\:\:\:....\left({iv}\right) \\ $$$$\:{solving}\:{them}\:\left({is}\:{tedious}\right),\: \\ $$$$\:...... \\ $$$$\:\:\:...... \\ $$$$\:\:\:\:\:......\:\:\:{solving}\:..... \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Jun/17

thank you so much dear.it is very nice  and smart.

$${thank}\:{you}\:{so}\:{much}\:{dear}.{it}\:{is}\:{very}\:{nice} \\ $$$${and}\:{smart}. \\ $$

Commented by RasheedSoomro last updated on 16/Jun/17

V Nice Sir!  ^• Sir, can such triangle be drawn  using Euclidean tools(straightedge  & compass)only?  ^• Can it be proved without analytical  approach?

$$\boldsymbol{\mathrm{V}}\:\boldsymbol{\mathrm{Nice}}\:\mathrm{Sir}! \\ $$$$\:^{\bullet} \mathrm{Sir},\:\mathrm{can}\:\mathrm{such}\:\mathrm{triangle}\:\mathrm{be}\:\mathrm{drawn} \\ $$$$\mathrm{using}\:\mathrm{Euclidean}\:\mathrm{tools}\left(\mathrm{straightedge}\right. \\ $$$$\left.\&\:\mathrm{compass}\right)\mathrm{only}? \\ $$$$\:^{\bullet} \mathrm{Can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{without}\:\mathrm{analytical} \\ $$$$\mathrm{approach}? \\ $$

Commented by mrW1 last updated on 17/Jun/17

Yes, such a triangle (usually two) can  be drawn using E′ tools only. With  analytical approach a cubic equation  is to solve at the end.

$$\mathrm{Yes},\:\mathrm{such}\:\mathrm{a}\:\mathrm{triangle}\:\left(\mathrm{usually}\:\mathrm{two}\right)\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{drawn}\:\mathrm{using}\:\mathrm{E}'\:\mathrm{tools}\:\mathrm{only}.\:\mathrm{With} \\ $$$$\mathrm{analytical}\:\mathrm{approach}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{equation} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com