Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160009 by HongKing last updated on 23/Nov/21

Find:  lim_(nā†’āˆž) (((n!))^(1/n)  āˆ™āˆ«_((1/1^2 ) + (1/2^2 ) + ... + (1/n^2 )) ^( (š›‘^2 /6))  e^x^2   dx)

$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\:\centerdot\underset{\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:...\:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }} {\overset{\:\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{6}}} {\int}}\:\mathrm{e}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\right) \\ $$

Answered by Tokugami last updated on 23/Nov/21

lim_(nā†’āˆž)  ((1/1^2 )+(1/2^2 )+...+(1/n^2 ))=(Ļ€^2 /6)  āˆ«_(Ļ€^2 /6) ^(Ļ€^2 /6) e^x^2  dx=0  lim_(nā†’āˆž)  ((n!))^(1/n)  āˆ™ 0=0

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+...+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\underset{\pi^{\mathrm{2}} /\mathrm{6}} {\overset{\pi^{\mathrm{2}} /\mathrm{6}} {\int}}{e}^{{x}^{\mathrm{2}} } {dx}=\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{{n}}]{{n}!}\:\centerdot\:\mathrm{0}=\mathrm{0} \\ $$

Commented by kowalsky78 last updated on 23/Nov/21

I think you are wrong. The last limit might be different to 0. We have āˆžāˆ™0 here!

$${I}\:{think}\:{you}\:{are}\:{wrong}.\:{The}\:{last}\:{limit}\:{might}\:{be}\:{different}\:{to}\:\mathrm{0}.\:{We}\:{have}\:\infty\centerdot\mathrm{0}\:{here}! \\ $$$$\: \\ $$

Commented by HongKing last updated on 23/Nov/21

thank you my dear Ser  but answer: e^((š›‘^4 -36)/(36))

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser} \\ $$$$\mathrm{but}\:\mathrm{answer}:\:\mathrm{e}^{\frac{\boldsymbol{\pi}^{\mathrm{4}} -\mathrm{36}}{\mathrm{36}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com