Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 160142 by cortano last updated on 25/Nov/21

Answered by puissant last updated on 25/Nov/21

lim_(x→1) ((x^(1111) +2x^(2222) −3x^(3333) )/(x^(4444) −1))   = lim_(x→1) (((d/dx){x^(1111) +2x^(2222) −3x^(3333) })/((d/dx){x^(4444) −1}))  = lim_(x→1) ((1111x^(1110) +4444x^(2221) −9999x^(3332) )/(4444x^(4443) ))  = ((1111+4444−9999)/(4444)) = −((4444)/(4444)) = −1..                ............Le puissant............

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}}\: \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\frac{{d}}{{dx}}\left\{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} \right\}}{\frac{{d}}{{dx}}\left\{{x}^{\mathrm{4444}} −\mathrm{1}\right\}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1111}{x}^{\mathrm{1110}} +\mathrm{4444}{x}^{\mathrm{2221}} −\mathrm{9999}{x}^{\mathrm{3332}} }{\mathrm{4444}{x}^{\mathrm{4443}} } \\ $$$$=\:\frac{\mathrm{1111}+\mathrm{4444}−\mathrm{9999}}{\mathrm{4444}}\:=\:−\frac{\mathrm{4444}}{\mathrm{4444}}\:=\:−\mathrm{1}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:............\mathscr{L}{e}\:{puissant}............ \\ $$

Commented by cortano last updated on 25/Nov/21

yes

$${yes} \\ $$

Answered by Rasheed.Sindhi last updated on 25/Nov/21

≻_( ⋏) ^( ⋎) Without Using Calculus_⋏ ^⋎ ≺  lim((x^(1111) +2x^(2222) −3x^(3333) )/(x^(4444) −1))  lim_(x→1) ((x^(1111) −x^(2222) +3x^(2222) −3x^(3333) )/(x^(4444) −1))  lim_(x→1) ((x^(1111) (1−x^(1111) )+3x^(2222) (1−x^(1111) ))/((x^(2222) −1)(x^(2222) +1)))  lim_(x→1) ((−(x^(1111) −1)(x^(1111) +3x^(2222) ))/((x^(1111) −1)(x^(1111) +1)(x^(2222) +1)))  lim_(x→1) ((−(x^(1111) +3x^(2222) ))/((x^(1111) +1)(x^(2222) +1)))=((−(1+3))/((1+1)(1+1)))  =((−4)/4)=−1

$$\succ_{\:\curlywedge} ^{\:\curlyvee} \mathrm{Without}\:\mathrm{Using}\:\mathrm{Calculus}_{\curlywedge} ^{\curlyvee} \prec \\ $$$$\mathrm{lim}\frac{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} −{x}^{\mathrm{2222}} +\mathrm{3}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} \left(\mathrm{1}−{x}^{\mathrm{1111}} \right)+\mathrm{3}{x}^{\mathrm{2222}} \left(\mathrm{1}−{x}^{\mathrm{1111}} \right)}{\left({x}^{\mathrm{2222}} −\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{−\cancel{\left({x}^{\mathrm{1111}} −\mathrm{1}\right)}\left({x}^{\mathrm{1111}} +\mathrm{3}{x}^{\mathrm{2222}} \right)}{\cancel{\left({x}^{\mathrm{1111}} −\mathrm{1}\right)}\left({x}^{\mathrm{1111}} +\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{−\left({x}^{\mathrm{1111}} +\mathrm{3}{x}^{\mathrm{2222}} \right)}{\left({x}^{\mathrm{1111}} +\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)}=\frac{−\left(\mathrm{1}+\mathrm{3}\right)}{\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)} \\ $$$$=\frac{−\mathrm{4}}{\mathrm{4}}=−\mathrm{1} \\ $$

Commented by puissant last updated on 25/Nov/21

Sir Rasheed.Sindhi (1−x^(1111) )=−(x^(1111) −1)

$${Sir}\:{Rasheed}.{Sindhi}\:\left(\mathrm{1}−{x}^{\mathrm{1111}} \right)=−\left({x}^{\mathrm{1111}} −\mathrm{1}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 25/Nov/21

Th∀nks to correct me sir! I′m going  to edit my answer.

$$\mathbb{T}\mathrm{h}\forall\mathrm{n}\Bbbk\mathrm{s}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{me}\:\mathrm{sir}!\:\mathrm{I}'\mathrm{m}\:\mathrm{going} \\ $$$$\mathrm{to}\:\mathrm{edit}\:\mathrm{my}\:\mathrm{answer}. \\ $$

Commented by cortano last updated on 25/Nov/21

okay

$${okay} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com