Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 160191 by mkam last updated on 25/Nov/21

∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx

$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$

Answered by mr W last updated on 25/Nov/21

generally  ∫_a ^b ∫_c ^d F(x,y)dydx=∫_c ^d ∫_a ^b F(x,y)dxdy  with a,b,c,d=constants    ∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx  =∫_0 ^π  ∫_1 ^( 2)  y sin(yx) dx dy  =∫_0 ^^π  [ −cos (xy)]_1 ^2  dy  =∫_0 ^^π  [ cos (y)−cos (2y)] dy  =[sin (y)−((sin (2y))/2)]_0 ^π   =0

$${generally} \\ $$$$\int_{{a}} ^{{b}} \int_{{c}} ^{{d}} {F}\left({x},{y}\right){dydx}=\int_{{c}} ^{{d}} \int_{{a}} ^{{b}} {F}\left({x},{y}\right){dxdy} \\ $$$${with}\:{a},{b},{c},{d}={constants} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:{y}\:{sin}\left({yx}\right)\:{dx}\:{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:^{\pi} } \left[\:−\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} \:{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:^{\pi} } \left[\:\mathrm{cos}\:\left({y}\right)−\mathrm{cos}\:\left(\mathrm{2}{y}\right)\right]\:{dy} \\ $$$$=\left[\mathrm{sin}\:\left({y}\right)−\frac{\mathrm{sin}\:\left(\mathrm{2}{y}\right)}{\mathrm{2}}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\mathrm{0} \\ $$

Commented by mr W last updated on 26/Nov/21

or (not so good way)  ∫_1 ^( 2)  ∫_0 ^( π)  y sin(xy) dy dx  =∫_1 ^( 2) {−(1/x) ∫_0 ^( π)  y d[cos (xy)]}dx  =∫_1 ^( 2) (1/x){−[ycos (xy)]_0 ^π +∫_0 ^( π)  cos (xy)dy }dx  =∫_1 ^( 2) (1/x){−[ycos (xy)]_0 ^π +[((sin (xy))/x)]_0 ^π }dx  =∫_1 ^( 2) (1/x){−πcos (xπ)+((sin (xπ))/x)}dx  =∫_1 ^( 2) {−((πcos (πx))/x)+((sin (πx))/x^2 )}dx  =∫_1 ^( 2) d(−((sin (πx))/x))  =[−((sin (πx))/x)]_1 ^2   =((sin π)/1)−((sin 2π)/2)  =0

$${or}\:\left({not}\:{so}\:{good}\:{way}\right) \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left\{−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{d}\left[\mathrm{cos}\:\left({xy}\right)\right]\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\left[{y}\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{0}} ^{\pi} +\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{cos}\:\left({xy}\right){dy}\:\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\left[{y}\mathrm{cos}\:\left({xy}\right)\right]_{\mathrm{0}} ^{\pi} +\left[\frac{\mathrm{sin}\:\left({xy}\right)}{{x}}\right]_{\mathrm{0}} ^{\pi} \right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}}\left\{−\pi\mathrm{cos}\:\left({x}\pi\right)+\frac{\mathrm{sin}\:\left({x}\pi\right)}{{x}}\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left\{−\frac{\pi\mathrm{cos}\:\left(\pi{x}\right)}{{x}}+\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} {d}\left(−\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}}\right) \\ $$$$=\left[−\frac{\mathrm{sin}\:\left(\pi{x}\right)}{{x}}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{sin}\:\pi}{\mathrm{1}}−\frac{\mathrm{sin}\:\mathrm{2}\pi}{\mathrm{2}} \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com