Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160564 by Avijit007 last updated on 02/Dec/21

if the roots of the equation ax^2 +bx+c=0  are in the ratio 3:4,then show that   12b^2 =49ac.

iftherootsoftheequationax2+bx+c=0areintheratio3:4,thenshowthat12b2=49ac.

Commented by otchereabdullai@gmail.com last updated on 02/Dec/21

nice!

nice!

Commented by cortano last updated on 02/Dec/21

 ax^2 +bx+c=0 { (x_1 ),(x_2 ) :} →(x_1 /x_2 ) = (3/4)    { ((x_1 =3k)),((x_2 =4k)) :} → { ((x_1 +x_2 =−(b/a)⇒k=−(b/(7a)))),((x_1 .x_2 =(c/a)⇒c=12ak^2 )) :}  ⇒c=12a(−(b/(7a)))^2   ⇒49a^2 c=12ab ⇒49ac=12b

ax2+bx+c=0{x1x2x1x2=34{x1=3kx2=4k{x1+x2=bak=b7ax1.x2=cac=12ak2c=12a(b7a)249a2c=12ab49ac=12b

Answered by Rasheed.Sindhi last updated on 02/Dec/21

((−b+(√(b^2 −4ac)) )/(2a)):((−b−(√(b^2 −4ac)) )/(2a))=4:3  3(((−b+(√(b^2 −4ac)) )/(2a)))=4(((−b−(√(b^2 −4ac)) )/(2a)))  4(((−b−(√(b^2 −4ac)) )/(2a)))−3(((−b+(√(b^2 −4ac)) )/(2a)))=0  −4b−4(√(b^2 −4ac)) +3b−3(√(b^2 −4ac))  −b=7(√(b^2 −4ac))   b^2 =49b^2 −196ac  48b^2 =196ac  12b^2 =49ac

b+b24ac2a:bb24ac2a=4:33(b+b24ac2a)=4(bb24ac2a)4(bb24ac2a)3(b+b24ac2a)=04b4b24ac+3b3b24acb=7b24acb2=49b2196ac48b2=196ac12b2=49ac

Commented by Rasheed.Sindhi last updated on 02/Dec/21

((−b+(√(b^2 −4ac)) )/(2a)):((−b−(√(b^2 −4ac)) )/(2a))=3:4  4(((−b+(√(b^2 −4ac)) )/(2a)))=3(((−b−(√(b^2 −4ac)) )/(2a)))  −4b+4(√(b^2 −4ac)) =−3b−3(√(b^2 −4ac))  b=7(√(b^2 −4ac))  b^2 =49(b^2 −4ac)=49b^2 −196ac  48b^2 =196ac  12b^2 =49ac

b+b24ac2a:bb24ac2a=3:44(b+b24ac2a)=3(bb24ac2a)4b+4b24ac=3b3b24acb=7b24acb2=49(b24ac)=49b2196ac48b2=196ac12b2=49ac

Answered by Rasheed.Sindhi last updated on 02/Dec/21

Let the roots are 3α & 4α  3α+4α=−(b/a) ∧ 3α.4α=(c/a)  7α=−(b/a) ∧ 12α^2 =(c/a)  ⇒12(−(b/(7a)))^2 =(c/a)⇒((12b^2 )/(49a^2 ))=(c/a)  ⇒12b^2 =49ac

Lettherootsare3α&4α3α+4α=ba3α.4α=ca7α=ba12α2=ca12(b7a)2=ca12b249a2=ca12b2=49ac

Commented by Avijit007 last updated on 02/Dec/21

thanks.

thanks.

Answered by Rasheed.Sindhi last updated on 02/Dec/21

Roots: 3k,4k    { ((a(3k)^2 +b(3k)+c=0)),((a(4k)^2 +b(4k)+c=0)) :}     { ((9ak^2 +3bk+c=0.......(i))),((16ak^2 +4bk+c=0.......(ii))) :}   (ii)−(i):7ak^2 +bk=0          k(7ak+b)=0          7ak+b=0            k=−(b/(7a))     ;k≠0  Update Roots:3(−(b/(7a)))  &  4(−(b/(7a)))  Product of roots:          12(−(b/(7a)))^2 =(c/a)          12b^2 =49ac

Roots:3k,4k{a(3k)2+b(3k)+c=0a(4k)2+b(4k)+c=0{9ak2+3bk+c=0.......(i)16ak2+4bk+c=0.......(ii)(ii)(i):7ak2+bk=0k(7ak+b)=07ak+b=0k=b7a;k0UpdateRoots:3(b7a)&4(b7a)Productofroots:12(b7a)2=ca12b2=49ac

Terms of Service

Privacy Policy

Contact: info@tinkutara.com