Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 160569 by LEKOUMA last updated on 02/Dec/21

Calculate   1.  lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   2. lim_(x→0) (((1+x×2^x )/(1+x×3^x )))^(1/x^2 )

Calculate1.limx0[2exx+11]x2+1x2.limx0(1+x×2x1+x×3x)1x2

Answered by qaz last updated on 02/Dec/21

(1)::lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   =lim_(x→0) [2(1+(x/(x+1))+o((x/(x+1))))−1]^((x^2 +1)/x)   =lim_(x→0) [(1+((2x)/(x+1))+o((x/(x+1))))^((x+1)/(2x)) ]^((2(x^2 +1))/(x+1))   =e^2   (2)::lim_(x→0) (((1+2^x x)/(1+3^x x)))^(1/x^2 )   =elim_(x→0) ((ln(1+2^x x)−ln(1+3^x x))/x^2 )  =elim_(x→0,ξ→1) (1/(ξx^2 ))[(1+2^x x)−(1+3^x x)]  =elim_(x→0) ((2^x −3^x )/x)  =elim_(x→0) (2^x ln2−3^x ln3)  =(2/3)

(1)::limx0[2exx+11]x2+1x=limx0[2(1+xx+1+o(xx+1))1]x2+1x=limx0[(1+2xx+1+o(xx+1))x+12x]2(x2+1)x+1=e2(2)::limx0(1+2xx1+3xx)1x2=elimx0ln(1+2xx)ln(1+3xx)x2=elimx0,ξ11ξx2[(1+2xx)(1+3xx)]=elimx02x3xx=elimx0(2xln23xln3)=23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com