Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 160576 by mnjuly1970 last updated on 02/Dec/21

Commented by aleks041103 last updated on 02/Dec/21

What do the square brakets mean?

$${What}\:{do}\:{the}\:{square}\:{brakets}\:{mean}? \\ $$

Commented by mnjuly1970 last updated on 04/Dec/21

  [x]= ⌊x⌋

$$\:\:\left[{x}\right]=\:\lfloor{x}\rfloor \\ $$

Answered by aleks041103 last updated on 04/Dec/21

ne^(−x)  is a monotonously decreasing function.  [ne^(−x) ]=k⇔ne^(−x) ∈[k,k+1)⇔e^x ∈((n/(k+1)),(n/k)]  ⇒x∈(ln(n)−ln(k+1),ln(n)−ln(k)]  x∈[0,∞)⇒ln(n)≥ln(k+1)⇒k≤n−1  ⇒∫_0 ^∞ [ne^(−x) ]dx=Σ_(k=0) ^(n−1) k ln(1+(1/k))=  =Σ_(k=1) ^(n−1) k ln(1+(1/k))  ⇒L=lim_(n→∞) (√n) e^((Σ_(k=1) ^(n−1) k ln(1+(1/k)))−n)   e^((Σ_(k=1) ^(n−1) k ln(1+(1/k)))−n) =e^(−n) Π_(k=1) ^(n−1) (((k+1)^k )/k^k )  Π_(k=1) ^(n−1) (((k+1)^k )/k^k )=Π_(k=1) ^(n−1) (((k+1)^(k+1) )/k^k )Π_(k=1) ^(n−1) (1/(k+1))=  =(n^n /(n!))  ⇒L=lim_(n→∞) (((√n)n^n e^(−n) )/(n!))  Stirling approxition:  n!∼(√(2πn))n^n e^(−n)   ⇒L=lim_(n→∞) (((√n)n^n e^(−n) )/( (√(2πn))n^n e^(−n) ))=  =(1/( (√(2π))))  ⇒L=(1/( (√(2π))))

$${ne}^{−{x}} \:{is}\:{a}\:{monotonously}\:{decreasing}\:{function}. \\ $$$$\left[{ne}^{−{x}} \right]={k}\Leftrightarrow{ne}^{−{x}} \in\left[{k},{k}+\mathrm{1}\right)\Leftrightarrow{e}^{{x}} \in\left(\frac{{n}}{{k}+\mathrm{1}},\frac{{n}}{{k}}\right] \\ $$$$\Rightarrow{x}\in\left({ln}\left({n}\right)−{ln}\left({k}+\mathrm{1}\right),{ln}\left({n}\right)−{ln}\left({k}\right)\right] \\ $$$${x}\in\left[\mathrm{0},\infty\right)\Rightarrow{ln}\left({n}\right)\geqslant{ln}\left({k}+\mathrm{1}\right)\Rightarrow{k}\leqslant{n}−\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \left[{ne}^{−{x}} \right]{dx}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)= \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right) \\ $$$$\Rightarrow{L}=\underset{{n}\rightarrow\infty} {{lim}}\sqrt{{n}}\:{e}^{\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\right)−{n}} \\ $$$${e}^{\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\right)−{n}} ={e}^{−{n}} \underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\left({k}+\mathrm{1}\right)^{{k}} }{{k}^{{k}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\left({k}+\mathrm{1}\right)^{{k}} }{{k}^{{k}} }=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\left({k}+\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}^{{k}} }\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{\mathrm{1}}{{k}+\mathrm{1}}= \\ $$$$=\frac{{n}^{{n}} }{{n}!} \\ $$$$\Rightarrow{L}=\underset{{n}\rightarrow\infty} {{lim}}\frac{\sqrt{{n}}{n}^{{n}} {e}^{−{n}} }{{n}!} \\ $$$${Stirling}\:{approxition}: \\ $$$${n}!\sim\sqrt{\mathrm{2}\pi{n}}{n}^{{n}} {e}^{−{n}} \\ $$$$\Rightarrow{L}=\underset{{n}\rightarrow\infty} {{lim}}\frac{\sqrt{{n}}{n}^{{n}} {e}^{−{n}} }{\:\sqrt{\mathrm{2}\pi{n}}{n}^{{n}} {e}^{−{n}} }= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}} \\ $$$$\Rightarrow{L}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}} \\ $$

Commented by mnjuly1970 last updated on 04/Dec/21

thannk you so much sir

$${thannk}\:{you}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com